Skip to content

Recurrent MTL architecture for antecedent selection in sluicing

Notifications You must be signed in to change notification settings

OlaRonning/sluice_antecedent_selection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sluice Antecedent Selection

Codebase for the NAACL HLT 2018 paper: Sluice Resolution without Hand-Crafted Features over Brittle Syntax trees.

To train and evaluate:

 > python3 mains/<model>_train_eval.py

model: rhs, sg or base. F.ex:

 > python3 mains/rhs_train_eval.py

To evaluate on dialogue:

 > python3 mains/eval_dialogue -l <log> -m <model>

<model> must be trained before it can be evaluated on dialogue. F.ex:

 > python3 mains/eval_dialogue -l tensorboard/20180415_230245 -m base

GloVe Embeddings

embeddings.npy and ids.npy in the data/glove directory must be unzip before training.

Dependencies

Run the command below to install depedencies.

 > pip install -r requirements.txt

The dependencies are:

  • absl-py==0.1.13
  • astor==0.6.2
  • bleach==1.5.0
  • gast==0.2.0
  • grpcio==1.10.1
  • html5lib==0.9999999
  • Markdown==2.6.11
  • numpy==1.14.2
  • protobuf==3.5.2.post1
  • six==1.11.0
  • tensorboard==1.7.0
  • tensorflow==1.7.0 # Note requirement.txt is not gpu supported version
  • termcolor==1.1.0
  • Werkzeug==0.14.1

Structure

The structure of the repo is:

├── configs
├── data
│   ├── auxiliaries
│   ├── esc
│   ├── opensub
│   └── glove
├── load
│   ├── core
│   └── readers
├── mains
├── metrics
└── nns
    └── custom_tf

About

Recurrent MTL architecture for antecedent selection in sluicing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages