-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
157 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
{ | ||
"id": "ml_fit_class_svm", | ||
"summary": "Train an SVM classification model", | ||
"description": "Fit an SVM (Support Vector Machine) classification model to training data. SVM is a powerful, versatile machine learning algorithm used for classification and regression tasks. It works by finding a hyperplane in an N-dimensional space that distinctly classifies the data points.", | ||
"categories": [ | ||
"machine learning" | ||
], | ||
"experimental": true, | ||
"parameters": [ | ||
{ | ||
"name": "predictors", | ||
"description": "The predictors for the SVM classification model as a vector data cube. These are the independent variables that the SVM algorithm analyses to learn patterns and relationships within the data.", | ||
"schema": [ | ||
{ | ||
"type": "object", | ||
"subtype": "datacube", | ||
"dimensions": [ | ||
{ | ||
"type": "geometry" | ||
}, | ||
{ | ||
"type": "bands" | ||
} | ||
] | ||
}, | ||
{ | ||
"type": "object", | ||
"subtype": "datacube", | ||
"dimensions": [ | ||
{ | ||
"type": "geometry" | ||
}, | ||
{ | ||
"type": "other" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "target", | ||
"description": "The dependent variable for SVM classification. These are the labeled data, aligning with predictor values based on a shared geometry dimension. This ensures a clear connection between predictor rows and labels.", | ||
"schema": { | ||
"type": "object", | ||
"subtype": "datacube", | ||
"dimensions": [ | ||
{ | ||
"type": "geometry" | ||
} | ||
] | ||
} | ||
}, | ||
{ | ||
"name": "kernel", | ||
"description": "Specifies the kernel type to be used in the algorithm.", | ||
"schema": { | ||
"type": "string", | ||
"enum": [ | ||
"linear", | ||
"poly", | ||
"rbf", | ||
"sigmoid" | ||
], | ||
"default": "rbf" | ||
} | ||
}, | ||
{ | ||
"name": "C", | ||
"description": "Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive.", | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0, | ||
"default": 1 | ||
} | ||
}, | ||
{ | ||
"name": "gamma", | ||
"description": "Kernel coefficient for 'rbf', 'poly', and 'sigmoid'. Higher values lead to tighter fits.", | ||
"optional": true, | ||
"default": 1, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0 | ||
} | ||
}, | ||
{ | ||
"name": "degree", | ||
"description": "Degree of the polynomial kernel function (only relevant for 'poly' kernel).", | ||
"optional": true, | ||
"default": 3, | ||
"schema": { | ||
"type": "integer", | ||
"minimum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "coef0", | ||
"description": "Independent term in the kernel function (only relevant for 'poly' and 'sigmoid' kernels).", | ||
"optional": true, | ||
"default": 0, | ||
"schema": { | ||
"type": "number" | ||
} | ||
}, | ||
{ | ||
"name": "tolerance", | ||
"description": "Tolerance of termination criterion.", | ||
"optional": true, | ||
"default": 0.001, | ||
"schema": { | ||
"type": "number", | ||
"minimum": 0 | ||
} | ||
}, | ||
{ | ||
"name": "cachesize", | ||
"description": "Size of the kernel cache in MB.", | ||
"optional": true, | ||
"default": 1000, | ||
"schema": { | ||
"type": "integer", | ||
"minimum": 1 | ||
} | ||
}, | ||
{ | ||
"name": "seed", | ||
"description": "A randomization seed to use for the random sampling in training. If not given or `null`, no seed is used and results may differ on subsequent use.", | ||
"optional": true, | ||
"default": null, | ||
"schema": { | ||
"type": [ | ||
"integer", | ||
"null" | ||
] | ||
} | ||
} | ||
], | ||
"returns": { | ||
"description": "A model object that can be saved with ``save_ml_model()`` and restored with ``load_ml_model()``.", | ||
"schema": { | ||
"type": "object", | ||
"subtype": "ml-model" | ||
} | ||
}, | ||
"links": [ | ||
{ | ||
"href": "https://link.springer.com/article/10.1007/BF00994018", | ||
"title": "C. Cortes and V. Vapnik (1995), Support-vector networks", | ||
"type": "text/html", | ||
"rel": "about" | ||
} | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -47,3 +47,6 @@ Hyndman | |
date1 | ||
date2 | ||
favor | ||
Cortes | ||
Vapnik | ||
rbf |