-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Doc 3 #721
base: develop
Are you sure you want to change the base?
Doc 3 #721
Conversation
06.understand_sentiment/README.cn.md
Outdated
@@ -21,6 +21,10 @@ | |||
|
|||
本章我们所要介绍的深度学习模型克服了BOW表示的上述缺陷,它在考虑词顺序的基础上把文本映射到低维度的语义空间,并且以端对端(end to end)的方式进行文本表示及分类,其性能相对于传统方法有显著的提升\[[1](#参考文献)\]。 | |||
|
|||
## 硬件环境的要求 | |||
本文档支持GPU训练,如果您使用了本文配套的docker镜像,请注意:该镜像对GPU的支持仅限于CUDA 8,cuDNN 5 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
CPU支持吗?
$$ h_t=Recrurent(x_t,h_{t-1})$$ | ||
<p align="center"> | ||
<img src="https://github.com/JesseyXujin/book/blob/doc_1/06.understand_sentiment/image/formula_rnn_2.png?raw=true" width = "50%" align="center"/><br/> | ||
</p> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这张公式图片有一个阴影,方便的话替换一张吧
@@ -77,7 +86,9 @@ $$ h_t = o_t\odot tanh(c_t) $$ | |||
|
|||
LSTM通过给简单的循环神经网络增加记忆及控制门的方式,增强了其处理远距离依赖问题的能力。类似原理的改进还有Gated Recurrent Unit (GRU)\[[8](#参考文献)\],其设计更为简洁一些。**这些改进虽然各有不同,但是它们的宏观描述却与简单的循环神经网络一样(如图2所示),即隐状态依据当前输入及前一时刻的隐状态来改变,不断地循环这一过程直至输入处理完毕:** | |||
|
|||
$$ h_t=Recrurent(x_t,h_{t-1})$$ | |||
<p align="center"> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
公式地址请留官方repo的地址
## 硬件环境的要求 | ||
本文档支持CPU和GPU训练,如果您使用了本文配套的docker镜像,请注意:该镜像对GPU的支持仅限于CUDA 8,cuDNN 5。 | ||
|
||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
### 说明: ### | |
1. 硬件环境要求: | |
本文可支持在CPU、GPU下运行 | |
2. Docker镜像支持的CUDA/cuDNN版本: | |
如果使用了Docker运行Book,请注意:这里所提供的默认镜像的GPU环境为 CUDA 8/cuDNN 5,对于NVIDIA Tesla V100等要求CUDA 9的 GPU,使用该镜像可能会运行失败。 | |
3. 文档和脚本中代码的一致性问题: | |
请注意:为使本文更加易读易用,我们拆分、调整了train.py的代码并放入本文。本文中代码与train.py的运行结果一致,可直接运行[train.py](url)进行验证。 |
$$h_t=f(x_t,h_{t-1})=\sigma(W_{xh}x_t+W_{hh}h_{t-1}+b_h)$$ | ||
<p align="center"> | ||
<img src="https://github.com/JesseyXujin/book/blob/doc_3/06.understand_sentiment/image/formula_rnn.png?raw=true" width = "65%" align="center"/><br/> | ||
</p> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
链接最好可以用book 仓库下的图片链接,虽然无法预览,但是等pr merge之后就可以了
xujin07 seems not to be a GitHub user. You need a GitHub account to be able to sign the CLA. If you have already a GitHub account, please add the email address used for this commit to your account. You have signed the CLA already but the status is still pending? Let us recheck it. |
No description provided.