Skip to content

PivovarA/Daal4Py-Optimizations

This branch is up to date with basilsony/Daal4Py-Optimizations:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
basil-sony
Mar 16, 2021
4340c4a · Mar 16, 2021

History

29 Commits
Feb 8, 2021
Mar 16, 2021
Feb 8, 2021
Feb 8, 2021
Feb 8, 2021
Mar 3, 2021
Feb 8, 2021

Repository files navigation

Daal4Py Optimization

Dataset obtained from :
from sklearn.datasets import load_boston
from sklearn.datasets import make_classification

Steps to Run on Intel Instance:

conda create -n test -y python=3.7
conda activate test
conda install -c conda-forge -y daal4py
conda install -c conda-forge -y scikit-learn
pip install xgboost
conda install -c conda-forge -y pandas
git clone https://github.com/basilsony/Daal4Py-Optimizations
cd Daal4Py-Optimizations/src/
python3 run.py -m="Model Name" -o=100000

Steps to Run on Graviton Instance:

sudo snap install cmake --classic
sudo apt update && sudo apt install -y python3-pip python3-pandas python3-sklearn
pip3 install xgboost
git clone https://github.com/basilsony/Daal4Py-Optimizations
cd Daal4Py-Optimizations/src/
python3 run.py -m="Model Name" -o=100000

Values within Model Name (-m) parameter:

Linear Regression - lm, lm_training, lm_patch, lm_patch_training, daal_lm, daal_lm_training
logistic Regression - logit, logit_training, logit_patch, logit_patch_training, daal_logit, daal_logit_training
Random Forest - rf, rf_training, rf_patch, rf_patch_training, daal_rf, daal_rf_training
K-Means - kmeans, kmeans_training, kmeans_patch, kmeans_patch_training, daal_kmeans_training
DBSCAN - dbs, dbs_patch

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 55.7%
  • Python 44.0%
  • Dockerfile 0.3%