Skip to content

TOPLOC: is a novel method for verifiable inference that enables users to verify that LLM providers are using the correct model configurations and settings

License

Notifications You must be signed in to change notification settings

PrimeIntellect-ai/toploc

Repository files navigation

TOPLOC: A Locality Sensitive Hashing Scheme for Trustless Verifiable Inference

TOPLOC leverages locality sensitive hashing of intermediate activations to verify that LLM providers are using authorized model configurations and settings.

The feature set includes:

  • Detect unauthorized modifications to models, prompts, and precision settings
  • 1000x reduction in storage requirements compared to full activation storage
  • Validation speeds up to 100x faster than original inference
  • Robust across different hardware configurations and implementations

For code used by experiments in our paper, check out: https://github.com/PrimeIntellect-ai/toploc-experiments

Installation

pip install -U toploc

Usage

Build proofs from activations:

As bytes (more compact when stored in binary formats):

import torch
from toploc import build_proofs_bytes

torch.manual_seed(42)

prefill = [torch.randn(5, 16, dtype=torch.bfloat16)]
generate = [torch.randn(16, dtype=torch.bfloat16) for _ in range(10)]
activations = prefill + generate

proofs = build_proofs_bytes(activations, decode_batching_size=3, topk=4, skip_prefill=False)

print(f"Activation shapes: {[i.shape for i in activations]}")
print(f"Proofs: {proofs}")
Activation shapes: [torch.Size([5, 16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16]), torch.Size([16])]
Proofs: [b'\xff\xd9\x1bB+g\xbaKum', b'\xff\xd9\xcb\xb8\x9a\xf1\x86%T\xa0', b'\xff\xd9\xb4h\xda\xe6\xe4\xabA\xb6', b'\xff\xd9\x80d\xd6X0\xe2\xafs', b'\xff\xd9\xd2\x04d\xea\x91\x91\xf6\xd7']

As base64 (more compact when stored in text formats):

import torch
from toploc import build_proofs_base64

torch.manual_seed(42)

prefill = [torch.randn(5, 16, dtype=torch.bfloat16)]
generate = [torch.randn(16, dtype=torch.bfloat16) for _ in range(10)]
activations = prefill + generate

proofs = build_proofs_base64(activations, decode_batching_size=3, topk=4, skip_prefill=False)

print(f"Activation shapes: {[i.shape for i in activations]}")
print(f"Proofs: {proofs}")
Activation shapes: [torch.Size([1, 5, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16]), torch.Size([1, 16])]
Proofs: ['/9kbQitnukt1bQ==', '/9nLuJrxhiVUoA==', '/9m0aNrm5KtBtg==', '/9mAZNZYMOKvcw==', '/9nSBGTqkZH21w==']

Verify proofs:

import torch
from toploc import verify_proofs_base64

torch.manual_seed(42)

prefill = [torch.randn(5, 16, dtype=torch.bfloat16)]
generate = [torch.randn(16, dtype=torch.bfloat16) for _ in range(10)]
activations = prefill + generate

proofs = ['/9kbQitnukt1bQ==', '/9nLuJrxhiVUoA==', '/9m0aNrm5KtBtg==', '/9mAZNZYMOKvcw==', '/9nSBGTqkZH21w==']
# apply some jitter to the activations
activations = [i * 1.01 for i in activations]

results = verify_proofs_base64(activations, proofs, decode_batching_size=3, topk=4, skip_prefill=False)

print("Results:")
print(*results, sep="\n")
Results:
VerificationResult(exp_intersections=4, mant_err_mean=1.75, mant_err_median=2.0)
VerificationResult(exp_intersections=4, mant_err_mean=2, mant_err_median=2.0)
VerificationResult(exp_intersections=4, mant_err_mean=1.25, mant_err_median=1.0)
VerificationResult(exp_intersections=4, mant_err_mean=1, mant_err_median=1.0)
VerificationResult(exp_intersections=4, mant_err_mean=2, mant_err_median=2.0)

Citing

@misc{ong2025toploclocalitysensitivehashing,
      title={TOPLOC: A Locality Sensitive Hashing Scheme for Trustless Verifiable Inference}, 
      author={Jack Min Ong and Matthew Di Ferrante and Aaron Pazdera and Ryan Garner and Sami Jaghouar and Manveer Basra and Johannes Hagemann},
      year={2025},
      eprint={2501.16007},
      archivePrefix={arXiv},
      primaryClass={cs.CR},
      url={https://arxiv.org/abs/2501.16007}, 
}

About

TOPLOC: is a novel method for verifiable inference that enables users to verify that LLM providers are using the correct model configurations and settings

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •