-
Notifications
You must be signed in to change notification settings - Fork 64
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from marpobuda/master
Live Training Seminar: Go Deeper with Data Analytics Using ArcGIS Pro and R
- Loading branch information
Showing
48 changed files
with
144 additions
and
0 deletions.
There are no files selected for viewing
Binary file added
BIN
+204 KB
Documentation/Live Training Seminar Materials - Logistic Regression.pdf
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
#Live Training Seminar: Go Deeper with Data Analytics Using ArcGIS Pro and R | ||
#Logistic Regression R Script Wrappings | ||
tool_exec<- function(in_params, out_params){ | ||
|
||
##################################################################################################### | ||
### Check/Load Required Packages | ||
##################################################################################################### | ||
arc.progress_label("Loading packages...") | ||
arc.progress_pos(20) | ||
|
||
if(!requireNamespace("MKmisc", quietly = TRUE)) | ||
install.packages("MKmisc", quiet = TRUE) | ||
if(!requireNamespace("ROCR", quietly = TRUE)) | ||
install.packages("ROCR", quiet = TRUE) | ||
if(!requireNamespace("survey", quietly = TRUE)) | ||
install.packages("survey", quiet = TRUE) | ||
if(!requireNamespace("pROC", quietly = TRUE)) | ||
install.packages("pROC", quiet = TRUE) | ||
if(!requireNamespace("ROCR", quietly = TRUE)) | ||
install.packages("ROCR", quiet = TRUE) | ||
if(!requireNamespace("caret", quietly = TRUE)) | ||
install.packages("caret", quiet = TRUE) | ||
|
||
require(MKmisc) | ||
require(ROCR) | ||
require(survey) | ||
require(pROC) | ||
require(ROCR) | ||
require(caret) | ||
|
||
##################################################################################################### | ||
### Define input/output parameters | ||
##################################################################################################### | ||
input_data <- in_params[[1]] | ||
train_percentage_size <- (in_params[[2]])/100 | ||
dependent_variable <- in_params[[3]] | ||
independent_variables <- in_params[[4]] | ||
|
||
output_prediction_data <- out_params[[1]] | ||
|
||
##################################################################################################### | ||
### Load Data and Create Dataframe R Object | ||
##################################################################################################### | ||
arc.progress_label("Loading data...") | ||
arc.progress_pos(40) | ||
|
||
d <- arc.open(input_data) | ||
fields_list <- append(c(dependent_variable), independent_variables) | ||
d_df_full <- arc.select(d) | ||
d_df <- arc.select(d, fields = fields_list) | ||
|
||
##################################################################################################### | ||
### Create Training and Testing Datasets | ||
##################################################################################################### | ||
arc.progress_label("Creating training and testing datasets...") | ||
arc.progress_pos(60) | ||
smp_size <- floor(train_percentage_size * nrow(d_df)) | ||
|
||
set.seed(1234) | ||
train_ind <- sample(seq_len(nrow(d_df)), size = smp_size) | ||
|
||
d_df_train <- d_df[train_ind, ] | ||
d_df_test <- d_df[-train_ind, ] | ||
|
||
##################################################################################################### | ||
### Fit Logistic Regression Model | ||
##################################################################################################### | ||
arc.progress_label("Creating training and testing datasets...") | ||
arc.progress_pos(80) | ||
|
||
response <- d_df_train[, 1] | ||
predictors <- d_df_train[, -1] | ||
|
||
d_df_train.log <- glm(response ~ ., family = binomial(link = 'logit'), data = predictors) | ||
|
||
d_df_full$Seagrass_Prediction <- predict(d_df_train.log, newdata = d_df_full, type = "response") | ||
|
||
##################################################################################################### | ||
### Run Diagnostics on Logistic Regression Model | ||
##################################################################################################### | ||
arc.progress_label("Running diagnostics on fitted model...") | ||
arc.progress_pos(80) | ||
|
||
#Summary of model fit | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
cat(paste0("\n", "Summary of Fitted Logistic Regression Model", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
print(summary(d_df_train.log)) | ||
|
||
#Hosmer-Lemeshow Test | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
cat(paste0("\n", "Hosmer-Lemeshow Goodness of Fit Test Results", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
HL <- HLgof.test(fit = fitted(d_df_train.log), obs = d_df_train$Seagrass) | ||
print(HL) | ||
|
||
#Prediction Accuracy | ||
d_df_test.log.pred <- predict(d_df_train.log, newdata = d_df_test, type = 'response') | ||
d_df_test.log.pred <- ifelse(d_df_test.log.pred > 0.5, 1, 0) | ||
misClassificError <- mean(d_df_test.log.pred != d_df_test$Seagrass) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
cat(paste0("\n", "Prediction Accuracy for Test Dataset", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
print(paste('Accuracy Percentage:', round((1-misClassificError)*100, 2))) | ||
cat(paste0("\n")) | ||
|
||
#ROC Curve | ||
d_df_test.log.pred <- predict(d_df_train.log, newdata = d_df_test, type = 'response') | ||
pred <- prediction(d_df_test.log.pred, d_df_test$Seagrass) | ||
perf <- performance(pred, measure = "tpr", x.measure = "fpr") | ||
plot(perf) | ||
auc <- performance(pred, measure = "auc") | ||
auc <- auc@y.values[[1]] | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
cat(paste0("\n", "Area Under the ROC Curve", "\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
print(paste('Area:', auc)) | ||
cat(paste0("\n")) | ||
cat(paste0("\n", "............................................", "\n")) | ||
cat(paste0("\n")) | ||
|
||
##################################################################################################### | ||
### Write Output | ||
##################################################################################################### | ||
arc.progress_label("Writing output...") | ||
arc.progress_pos(80) | ||
|
||
if(!is.null(output_prediction_data) && output_prediction_data != "NA") | ||
arc.write(output_prediction_data, d_df_full, shape_info = arc.shapeinfo(d)) | ||
|
||
arc.progress_pos(100) | ||
} |