-
Notifications
You must be signed in to change notification settings - Fork 141
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement the fp16xint4 scale weight only kernel for Ali (#1786)
* enable int4 scale (weight only) kernel * format some files * Add unit test for int4 weight only * fixed and formatted code * fixed * formated * formated * fixed * fixed a bug in the ckProfiler, and formatted the code --------- Co-authored-by: mtgu0705 <[email protected]>
- Loading branch information
Showing
21 changed files
with
7,562 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,357 @@ | ||
// SPDX-License-Identifier: MIT | ||
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. | ||
|
||
#include "common.hpp" | ||
|
||
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp" | ||
|
||
using ADataType = ck::half_t; | ||
using BDataType = ck::pk_i4_t; | ||
using BScaleDataType = ck::half_t; | ||
using AccDataType = float; | ||
using CShuffleDataType = ck::half_t; | ||
using CDataType = ck::half_t; | ||
|
||
using ALayout = Row; | ||
using BLayout = Col; | ||
using CLayout = Row; | ||
|
||
using AElementOp = PassThrough; | ||
using BElementOp = PassThrough; | ||
using CElementOp = PassThrough; | ||
|
||
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; | ||
|
||
static constexpr bool PermuteA = false; | ||
static constexpr bool PermuteB = true; | ||
|
||
static constexpr ck::index_t Scale_Block_N = 1; | ||
static constexpr ck::index_t Scale_Block_K = 128; | ||
|
||
static constexpr ck::index_t KPerBlock = 64; | ||
|
||
// clang-format off | ||
using DeviceGemmV2Instance = | ||
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3< | ||
ALayout, BLayout, CLayout, | ||
ADataType, BDataType, BScaleDataType, CDataType, AccDataType, CShuffleDataType, | ||
AElementOp, BElementOp, CElementOp, GemmDefault, | ||
256, Scale_Block_N, Scale_Block_K, | ||
128, 128, | ||
KPerBlock, 8, 32, | ||
32, 32, | ||
4, 1, | ||
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, | ||
2, 8, 8, 0, | ||
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, | ||
2, 32, 32, 0, | ||
1, 1, S<1, 32, 1, 8>, 8, | ||
ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, CDataType, CDataType, PermuteA, PermuteB>; | ||
|
||
// clang-format on | ||
|
||
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, | ||
AccDataType, | ||
CDataType, | ||
AccDataType, | ||
PassThrough, | ||
PassThrough, | ||
PassThrough>; | ||
template <typename ProblemType> | ||
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) | ||
{ | ||
using namespace ck::literals; | ||
|
||
auto M = problem_size.M; | ||
auto N = problem_size.N; | ||
auto K = problem_size.K; | ||
auto StrideA = problem_size.StrideA; | ||
auto StrideB = problem_size.StrideB; | ||
auto StrideC = problem_size.StrideC; | ||
auto KBatch = problem_size.KBatch; | ||
|
||
auto f_host_tensor_descriptor = | ||
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { | ||
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>) | ||
{ | ||
return HostTensorDescriptor({row, col}, {stride, 1_uz}); | ||
} | ||
else | ||
{ | ||
return HostTensorDescriptor({row, col}, {1_uz, stride}); | ||
} | ||
}; | ||
|
||
auto f_get_default_stride = | ||
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) { | ||
if(stride == -1) | ||
{ | ||
// give a chance if stride is -1, return a default packed stride | ||
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>) | ||
{ | ||
return static_cast<std::size_t>(col); | ||
} | ||
else | ||
{ | ||
return static_cast<std::size_t>(row); | ||
} | ||
} | ||
else | ||
return static_cast<std::size_t>(stride); | ||
}; | ||
|
||
ck::index_t Scale_Stride_BN = (K + Scale_Block_K - 1) / Scale_Block_K; | ||
|
||
StrideA = f_get_default_stride(M, K, StrideA, ALayout{}); | ||
StrideB = f_get_default_stride(K, N, StrideB, BLayout{}); | ||
StrideC = f_get_default_stride(M, N, StrideC, CLayout{}); | ||
|
||
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); | ||
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); | ||
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); | ||
Tensor<BScaleDataType> b1_k_n(f_host_tensor_descriptor((K + Scale_Block_K - 1) / Scale_Block_K, | ||
(N + Scale_Block_N - 1) / Scale_Block_N, | ||
Scale_Stride_BN, | ||
BLayout{})); | ||
|
||
switch(config.init_method) | ||
{ | ||
case 0: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1}); | ||
break; | ||
case 1: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0}); | ||
break; | ||
case 2: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1}); | ||
break; | ||
case 3: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1}); | ||
break; | ||
case 4: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0}); | ||
break; | ||
case 5: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1}); | ||
break; | ||
default: | ||
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.5, 0.5}); | ||
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2}); | ||
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0}); | ||
} | ||
|
||
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); | ||
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); | ||
|
||
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; | ||
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; | ||
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl; | ||
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; | ||
|
||
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize()); | ||
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize()); | ||
DeviceMem b1_scale_device_buf(sizeof(BScaleDataType) * b1_k_n.mDesc.GetElementSpaceSize()); | ||
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize()); | ||
|
||
// weight permute | ||
if constexpr(PermuteB) | ||
{ | ||
int K1 = KPerBlock; | ||
int K0 = K / KPerBlock; | ||
|
||
// int K0, N, K1 | ||
for(int j = 0; j < K0; j++) | ||
{ | ||
for(int i = 0; i < N; i++) | ||
{ | ||
for(int jj = 0; jj < K1; jj++) | ||
{ | ||
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj)); | ||
} | ||
} | ||
} | ||
} | ||
else | ||
{ | ||
for(int i = 0; i < N; i++) | ||
{ | ||
for(int j = 0; j < K; j++) | ||
{ | ||
b_k_n_permute(i * K + j) = b_k_n(i * K + j); | ||
} | ||
} | ||
} | ||
|
||
// vector pk_i4x4 permute | ||
for(int i = 0; i < N; i++) | ||
{ | ||
for(int j = 0; j < K; j += 8) | ||
{ | ||
int input[8]; | ||
|
||
for(int k = 0; k < 4; k++) | ||
{ | ||
int i4x2 = b_k_n_permute(j + k * 2, i).data; | ||
input[k * 2 + 0] = (i4x2 >> 4) & 0xf; | ||
input[k * 2 + 1] = (i4x2 >> 0) & 0xf; | ||
} | ||
|
||
// permute 01234567->20643175 | ||
{ | ||
int hi = input[2]; | ||
int lo = input[0]; | ||
int i4x2 = (hi << 4) | lo; | ||
|
||
b_k_n_permute(j + 0, i) = i4x2; | ||
} | ||
|
||
{ | ||
int hi = input[6]; | ||
int lo = input[4]; | ||
int i4x2 = (hi << 4) | lo; | ||
|
||
b_k_n_permute(j + 2, i) = i4x2; | ||
} | ||
|
||
{ | ||
int hi = input[3]; | ||
int lo = input[1]; | ||
int i4x2 = (hi << 4) | lo; | ||
|
||
b_k_n_permute(j + 4, i) = i4x2; | ||
} | ||
|
||
{ | ||
int hi = input[7]; | ||
int lo = input[5]; | ||
int i4x2 = (hi << 4) | lo; | ||
|
||
b_k_n_permute(j + 6, i) = i4x2; | ||
} | ||
} | ||
} | ||
|
||
a_m_k_device_buf.ToDevice(a_m_k.mData.data()); | ||
b_k_n_device_buf.ToDevice(b_k_n_permute.mData.data()); | ||
b1_scale_device_buf.ToDevice(b1_k_n.mData.data()); | ||
DeviceMem workspace; | ||
|
||
auto a_element_op = AElementOp{}; | ||
auto b_element_op = BElementOp{}; | ||
auto c_element_op = CElementOp{}; | ||
|
||
// do GEMM | ||
auto gemm = DeviceGemmV2Instance{}; | ||
auto invoker = gemm.MakeInvoker(); | ||
float ave_time = 0; | ||
|
||
auto argument = | ||
gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()), | ||
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()), | ||
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()), | ||
M, | ||
N, | ||
K, | ||
StrideA, | ||
StrideB, | ||
StrideC, | ||
Scale_Stride_BN, | ||
static_cast<BScaleDataType*>(b1_scale_device_buf.GetDeviceBuffer()), | ||
KBatch, | ||
a_element_op, | ||
b_element_op, | ||
c_element_op); | ||
|
||
if(!gemm.IsSupportedArgument(argument)) | ||
{ | ||
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl; | ||
|
||
return true; | ||
} | ||
|
||
bool pass = true; | ||
if(config.do_verification) | ||
{ | ||
Tensor<float> b_k_n_dequant({K, N}); | ||
|
||
float v_b = 0; | ||
for(int n = 0; n < N; n++) | ||
{ | ||
for(int k = 0; k < K; k++) | ||
{ | ||
ck::pk_i4_t i4x2 = b_k_n(k, n).data; | ||
int8_t i4 = 0; | ||
if(k % 2 == 1) | ||
i4 = (i4x2.data >> 0) & 0xf; | ||
else | ||
i4 = (i4x2.data >> 4) & 0xf; | ||
i4 = i4 - 8; | ||
v_b = ck::type_convert<float>(i4); | ||
|
||
b_k_n_dequant(k, n) = | ||
ck::type_convert<float>(v_b) * | ||
ck::type_convert<float>(b1_k_n(k / Scale_Block_K, n / Scale_Block_N)); | ||
} | ||
} | ||
|
||
auto ref_gemm = ReferenceGemmInstance{}; | ||
auto ref_invoker = ref_gemm.MakeInvoker(); | ||
|
||
auto ref_argument = ref_gemm.MakeArgument( | ||
a_m_k, b_k_n_dequant, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{}); | ||
|
||
ref_invoker.Run(ref_argument); | ||
|
||
ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 0}); | ||
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); | ||
|
||
pass &= ck::utils::check_err(c_m_n_device_result, | ||
c_m_n_host_result, | ||
"Error: Incorrect results!", | ||
get_rtol<CDataType>(), | ||
get_atol<CDataType>()); | ||
} | ||
|
||
if(config.time_kernel) | ||
{ | ||
ave_time = | ||
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 20, 50, true, 50}); | ||
|
||
std::size_t flop = 2_uz * M * N * K; | ||
std::size_t num_btype = | ||
sizeof(ADataType) * M * K + | ||
sizeof(BDataType) * K * N / | ||
(ck::is_same_v<ck::remove_cvref_t<BDataType>, ck::pk_i4_t> ? 2 : 1) + | ||
sizeof(CDataType) * M * N; | ||
|
||
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; | ||
|
||
float gb_per_sec = num_btype / 1.E6 / ave_time; | ||
|
||
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec | ||
<< " GB/s, " << gemm.GetTypeString() << std::endl; | ||
} | ||
return pass; | ||
} | ||
|
||
bool run_gemm_splitk_example(int argc, char* argv[]) | ||
{ | ||
ProblemSizeSplitK problem_size; | ||
ExecutionConfig config; | ||
|
||
return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config); | ||
} | ||
|
||
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); } |
Oops, something went wrong.