Skip to content

RenatoMaynard/A-Multiple-population-coarse-grained-Genetic-Algorithm-to-solve-the-Quadratic-Assignment-Problem-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Genetic Algorithm (GA) Implementations for the Quadratic Assignment Problem (QAP)

Overview

This repository contains two implementations of Genetic Algorithms (GAs) for solving the Quadratic Assignment Problem (QAP):

  1. GA implemented in C: A sequential version of the Genetic Algorithm designed to run on CPU.
  2. GA implemented in CUDA: A parallelized version of the Genetic Algorithm GPU for improved computational performance, developed using the paper "Solving Quadratic Assignment Problems by Genetic Algorithms with GPU Computation: A Case Study" as a reference.
  3. Mathematical Model in Jupyter Notebook: A Jupyter Notebook containing the mathematical model to solve the QAP.

Acknowledgments

The instances used in this project are sourced from QAPLIB, a benchmark library for Quadratic Assignment Problems. Special thanks to the authors of the paper "Solving Quadratic Assignment Problems by Genetic Algorithms with GPU Computation: A Case Study".

About

A Multiple-population coarse-grained Genetic Algorithm to solve the Quadratic Assignment Problem

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published