Please report errors in these instructions
This library contains a set of python tools for performing image segmentation using Markov Random Fields (MRFS) and/or Conditional Random Fields (CRFs).
The default matrix orientation is numberExamples x numberDimensions, which is in line with scikit learn and matlab.
The first aim is to get some standard results on the MSRC data set. The target platform is Ubuntu 13.04. By far the easiest way to use the software is on a VM using vagrant. If you're running Ubuntu 13.04, you could try running parts of the provisioning script in the vagrant directory (bootstrap.sh) to install the necessary dependencies.
[MSRC data is available here] (http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx)
Clone the repo.
Install some needed dependencies:
apt-get update
apt-get install -y emacs git-core python-pip python-dev \
python-numpy python-matplotlib python-scipy python-pandas \
libboost-dev python-opencv
pip install cython scikit-learn scikit-image --upgrade
Get a local installation of the slic python library:
cd mylibdir
git clone https://github.com/amueller/slic-python.git
cd slic-python
make
Build the cython components:
cd alienMarkovNetworks/maxflow
python setup.py build_ext --inplace
Add these libraries to your python path, possibly in your .bashrc or the like:
echo 'export PYTHONPATH="$PYTHONPATH":mylibdir/slic-python:mycodedir/alienMarkovNetworks/maxflow' \
>> ~/.bashrc
NOTE: vagrant uses virtualbox by default. For me this required switching virtualisation on in the bios.
Run these commands:
sudo apt-get install vagrant
vagrant box add raring64 \
http://cloud-images.ubuntu.com/vagrant/raring/current/raring-server-cloudimg-amd64-vagrant-disk1.box
git clone https://github.com/RockStarCoders/alienMarkovNetworks.git
cd alienMarkovNetworks/vagrant
vagrant up
vagrant ssh
cd /vagrant/alienMarkovNetworks/
Go get some coffee, and after that you should be up and running inside the VM.
On the host machine, you can provide the MSRC data to the VM as follows:
cd alienMarkovNetworks
./createMSRCPartition.sh -c /path/to/MSRC_ObjCategImageDatabase_v2 \
MSRC_dataSplit_Shotton/Train.txt \
MSRC_dataSplit_Shotton/Validation.txt \
MSRC_dataSplit_Shotton/Test.txt \
vagrant/msrcData
These instructions will allow you to reproduce a result on the MSRC data set.
- Download the [MSRC data] (http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx). Let's call that path DATAPATH.
- Copy it to partitioned sub-directories:
mkdir DATAPATH/msrcPartitioned
cd alienMarkovNetworks
./createMSRCPartition.sh -c DATAPATH/MSRC_ObjCategImageDatabase_v2 \
MSRC_dataSplit_Shotton/Train.txt \
MSRC_dataSplit_Shotton/Validation.txt \
MSRC_dataSplit_Shotton/Test.txt \
DATAPATH/msrcPartitioned
- Run the following script:
mkdir OUTPUTDIR
./reproduceMSRC.sh DATAPATH/msrcPartitioned OUTPUTDIR 8
The number 8 above is the number of cores to use. Limiting factor is RAM. I have 32 GB RAM and 8 is good for me. In OUTPUTDIR this produces labelled images, as well as accuracy metrics to standard out.