-
Notifications
You must be signed in to change notification settings - Fork 158
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This pr adds SVDF kernel. ONE-DCO-1.0-Signed-off-by: Artem Balyshev <[email protected]>
- Loading branch information
Artem Balyshev
committed
Jul 2, 2024
1 parent
1389776
commit ccf456c
Showing
9 changed files
with
1,678 additions
and
1 deletion.
There are no files selected for viewing
195 changes: 195 additions & 0 deletions
195
onert-micro/onert-micro/include/pal/common/PALSVDFCommon.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H | ||
#define ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H | ||
|
||
#include "PALUtils.h" | ||
|
||
#include "core/OMKernelData.h" | ||
|
||
#include <cmath> | ||
|
||
namespace onert_micro | ||
{ | ||
namespace execute | ||
{ | ||
namespace pal | ||
{ | ||
|
||
namespace | ||
{ | ||
// Returns the floating point value for a fused activation: | ||
inline float activationValFloat(const circle::ActivationFunctionType act, float a) | ||
{ | ||
switch (act) | ||
{ | ||
case circle::ActivationFunctionType_NONE: | ||
return a; | ||
case circle::ActivationFunctionType_RELU: | ||
return std::max(0.0f, a); | ||
case circle::ActivationFunctionType_RELU_N1_TO_1: | ||
return std::max(-1.0f, std::min(a, 1.0f)); | ||
case circle::ActivationFunctionType_RELU6: | ||
return std::max(0.0f, std::min(a, 6.0f)); | ||
case circle::ActivationFunctionType_TANH: | ||
return std::tanh(a); | ||
case circle::ActivationFunctionType_SIGN_BIT: | ||
return std::signbit(a); | ||
default: | ||
assert(false && "Not supported"); | ||
} | ||
return 0.0f; // To indicate an unsupported activation (i.e. when a new fused | ||
// activation is added to the enum and not handled here). | ||
} | ||
|
||
static inline void | ||
applyTimeWeightsBiasAndActivation(int batch_size, int memory_size, int num_filters, int num_units, | ||
int rank, const float *const weights_time_ptr, | ||
const float *const bias_ptr, | ||
circle::ActivationFunctionType activation, float *const state_ptr, | ||
float *const scratch_ptr, float *const output_ptr) | ||
{ | ||
// Compute matmul(activation_state, weights_time). | ||
for (int b = 0; b < batch_size; ++b) | ||
{ | ||
// Perform batched vector dot product: | ||
float *scratch_ptr_batch = scratch_ptr + b * num_filters; | ||
const float *vector1_ptr = weights_time_ptr; | ||
const float *vector2_ptr = state_ptr + b * memory_size * num_filters; | ||
for (int i = 0; i < num_filters; ++i) | ||
{ | ||
*scratch_ptr_batch = 0.f; | ||
for (int j = 0; j < memory_size; ++j) | ||
{ | ||
*scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++; | ||
} | ||
scratch_ptr_batch++; | ||
} | ||
} | ||
|
||
// Initialize output with bias if provided. | ||
if (bias_ptr) | ||
{ | ||
// VectorBatchVectorAssign | ||
for (int i = 0; i < batch_size; ++i) | ||
{ | ||
float *output_data = output_ptr + i * num_units; | ||
const float *bias_data = bias_ptr; | ||
for (int j = 0; j < num_units; ++j) | ||
{ | ||
*output_data++ = *bias_data++; | ||
} | ||
} | ||
} | ||
else | ||
{ | ||
float *output_data = output_ptr; | ||
for (int i = 0; i < batch_size * num_units; ++i) | ||
{ | ||
*output_data++ = 0.0f; | ||
} | ||
} | ||
|
||
// Reduction sum. | ||
for (int b = 0; b < batch_size; ++b) | ||
{ | ||
float *output_ptr_batch = output_ptr + b * num_units; | ||
float *scratch_ptr_batch = scratch_ptr + b * num_filters; | ||
|
||
// Reduction sum vector | ||
for (int i = 0; i < num_units; ++i) | ||
{ | ||
for (int j = 0; j < rank; j++) | ||
{ | ||
output_ptr_batch[i] += *scratch_ptr_batch++; | ||
} | ||
} | ||
} | ||
|
||
// Apply activation. | ||
for (int b = 0; b < batch_size; ++b) | ||
{ | ||
float *output_ptr_batch = output_ptr + b * num_units; | ||
for (int i = 0; i < num_units; ++i) | ||
{ | ||
*output_ptr_batch = activationValFloat(activation, *output_ptr_batch); | ||
++output_ptr_batch; | ||
} | ||
} | ||
} | ||
|
||
} // namespace | ||
|
||
OMStatus SVDF(const float *input_data, const float *weights_feature_data, | ||
const float *weights_time_data, const float *bias_data, float *state_data, | ||
float *scratch_data, float *output_data, const int rank, const int input_size, | ||
const int batch_size, const int num_filters, const int num_units, | ||
const int memory_size, const circle::ActivationFunctionType activation) | ||
{ | ||
// Left shift the activation_state. | ||
{ | ||
float *new_state_start = state_data; | ||
const float *old_state_start = state_data + 1; | ||
const float *old_state_end = state_data + batch_size * num_filters * memory_size; | ||
while (old_state_start != old_state_end) | ||
{ | ||
*new_state_start++ = *old_state_start++; | ||
} | ||
} | ||
|
||
// Note: no need to clear the latest activation, matmul is not accumulative. | ||
|
||
// Compute conv1d(inputs, weights_feature). | ||
// The activation_state's rightmost column is used to save current cycle | ||
// activation. This is achieved by starting at state_ptr[memory_size - 1] and | ||
// having the stride equal to memory_size. | ||
|
||
// Perform batched matrix vector multiply operation: | ||
{ | ||
const float *matrix = weights_feature_data; | ||
const float *vector = input_data; | ||
float *result = &state_data[memory_size - 1]; | ||
float *result_in_batch = result; | ||
for (int i = 0; i < batch_size; ++i) | ||
{ | ||
const float *matrix_ptr = matrix; | ||
for (int j = 0; j < num_filters; ++j) | ||
{ | ||
float dot_prod = 0.0f; | ||
const float *vector_in_batch = vector + i * input_size; | ||
for (int k = 0; k < input_size; ++k) | ||
{ | ||
dot_prod += *matrix_ptr++ * *vector_in_batch++; | ||
} | ||
*result_in_batch = dot_prod; | ||
result_in_batch += memory_size; | ||
} | ||
} | ||
} | ||
|
||
applyTimeWeightsBiasAndActivation(batch_size, memory_size, num_filters, num_units, rank, | ||
weights_time_data, bias_data, activation, state_data, | ||
scratch_data, output_data); | ||
return Ok; | ||
} | ||
|
||
} // namespace pal | ||
} // namespace execute | ||
} // namespace onert_micro | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_SVDF_H | ||
#define ONERT_MICRO_EXECUTE_PAL_SVDF_H | ||
|
||
#include "PALSVDFCommon.h" | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_SVDF_H |
Oops, something went wrong.