Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onert-micro] Introduce Trainable weight storage #11398

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifdef ENABLE_TRAINING

#ifndef LUCI_INTERPRETER_CORE_TRAINABLE_WEIGHT_STORAGE_H
#define LUCI_INTERPRETER_CORE_TRAINABLE_WEIGHT_STORAGE_H

#include "luci_interpreter/TrainingSettings.h"
#include "luci_interpreter/core/reader/CircleMicroReader.h"
#include "memory_managers/SimpleMemoryManager.h"

#include <unordered_map>

namespace luci_interpreter
{
namespace training
{

class TrainableWeightStorage
{
public:
TrainableWeightStorage() = default;

public:
Status getTrainWeightDataByTensor(const circle::Tensor *tensor, uint8_t **result_data);

Status clearAllTrainableWeights();

training::Status fillTrainableWeightsStorage(const CircleReader *reader,
SimpleMemoryManager *memory_manager,
uint32_t number_of_last_trainable_layers);

private:
Status createTrainableWeightForTensor(const circle::Tensor *tensor,
SimpleMemoryManager *memoryManager,
const uint8_t *const_data);

private:
std::unordered_map<const circle::Tensor *, uint8_t *> _tensor_to_data;
};

} // namespace training
} // namespace luci_interpreter

#endif // LUCI_INTERPRETER_CORE_TRAINABLE_WEIGHT_STORAGE_H

#endif // ENABLE_TRAINING
3 changes: 2 additions & 1 deletion onert-micro/luci-interpreter/src/core/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@ set(SOURCES
"${LUCI_INTERPRETER_INCLUDE_DIR}/luci_interpreter/core/Tensor.h"
RuntimeGraph.h
RuntimeGraph.cpp
RuntimeModule.h)
RuntimeModule.h
TrainableWeightStorage.cpp)

add_library(${LUCI_INTERPRETER_CORE} STATIC ${SOURCES})
if (NOT NNCC_LIBRARY_NO_PIC)
Expand Down
117 changes: 117 additions & 0 deletions onert-micro/luci-interpreter/src/core/TrainableWeightStorage.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
/*
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifdef ENABLE_TRAINING

#include "luci_interpreter/core/TrainableWeightStorage.h"

namespace luci_interpreter
{
namespace training
{

Status TrainableWeightStorage::createTrainableWeightForTensor(const circle::Tensor *tensor,
SimpleMemoryManager *memoryManager,
const uint8_t *const_data)
{
assert(_tensor_to_data.count(tensor) == 0 && "Double training weight");

if (_tensor_to_data.count(tensor) != 0)
{
return Error;
}

uint8_t *allocated_data = memoryManager->allocate_memory(tensor);

std::memcpy(allocated_data, const_data,
size(Tensor::element_type(tensor)) * Tensor::num_elements(tensor));

_tensor_to_data[tensor] = allocated_data;

return Ok;
}

training::Status
TrainableWeightStorage::fillTrainableWeightsStorage(const CircleReader *reader,
SimpleMemoryManager *memory_manager,
uint32_t number_of_last_trainable_layers)
{
const auto operators_size = reader->operators().size();
const auto operators = reader->operators();

const uint32_t first_trainable_layer_pos = operators_size - number_of_last_trainable_layers;

for (uint32_t i = first_trainable_layer_pos; i < operators_size; ++i)
{
const auto op = operators.at(i);
assert(op != nullptr);

const auto *op_inputs = op->inputs();

for (const int32_t input_idx : *op_inputs)
{
if (input_idx == -1)
continue;
const circle::Tensor *tensor = reader->tensors()[input_idx];

if (_tensor_to_data.count(tensor) > 0)
continue;

const auto tensor_data = reader->buffers()[tensor->buffer()]->data();
if (tensor_data != nullptr)
{
if (createTrainableWeightForTensor(tensor, memory_manager, tensor_data->data()) ==
training::Error)
return training::Error;
}
}
}
return training::Ok;
}

Status TrainableWeightStorage::clearAllTrainableWeights()
{
for (const auto &pair : _tensor_to_data)
{
delete[] pair.second;
}

_tensor_to_data.clear();
return Ok;
}

Status TrainableWeightStorage::getTrainWeightDataByTensor(const circle::Tensor *tensor,
uint8_t **result_data)
{
assert(tensor != nullptr); // CALLER SIDE

auto it = _tensor_to_data.find(tensor);

if (it == _tensor_to_data.end())
{
result_data = nullptr;
return Ok;
}

*result_data = it->second;

return Ok;
}

} // namespace training
} // namespace luci_interpreter

#endif // ENABLE_TRAINING