Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onert-micro] Add SVDF kernel #13337

Merged
merged 1 commit into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
195 changes: 195 additions & 0 deletions onert-micro/onert-micro/include/pal/common/PALSVDFCommon.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H
#define ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H

#include "PALUtils.h"

#include "core/OMKernelData.h"

#include <cmath>

namespace onert_micro
{
namespace execute
{
namespace pal
{

namespace
{
// Returns the floating point value for a fused activation:
inline float activationValFloat(const circle::ActivationFunctionType act, float a)
{
switch (act)
{
case circle::ActivationFunctionType_NONE:
return a;
case circle::ActivationFunctionType_RELU:
return std::max(0.0f, a);
case circle::ActivationFunctionType_RELU_N1_TO_1:
return std::max(-1.0f, std::min(a, 1.0f));
case circle::ActivationFunctionType_RELU6:
return std::max(0.0f, std::min(a, 6.0f));
case circle::ActivationFunctionType_TANH:
return std::tanh(a);
case circle::ActivationFunctionType_SIGN_BIT:
return std::signbit(a);
default:
assert(false && "Not supported");
}
return 0.0f; // To indicate an unsupported activation (i.e. when a new fused
// activation is added to the enum and not handled here).
}

static inline void
applyTimeWeightsBiasAndActivation(int batch_size, int memory_size, int num_filters, int num_units,
int rank, const float *const weights_time_ptr,
const float *const bias_ptr,
circle::ActivationFunctionType activation, float *const state_ptr,
float *const scratch_ptr, float *const output_ptr)
{
// Compute matmul(activation_state, weights_time).
for (int b = 0; b < batch_size; ++b)
{
// Perform batched vector dot product:
float *scratch_ptr_batch = scratch_ptr + b * num_filters;
const float *vector1_ptr = weights_time_ptr;
const float *vector2_ptr = state_ptr + b * memory_size * num_filters;
for (int i = 0; i < num_filters; ++i)
{
*scratch_ptr_batch = 0.f;
for (int j = 0; j < memory_size; ++j)
{
*scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++;
}
scratch_ptr_batch++;
}
}

// Initialize output with bias if provided.
if (bias_ptr)
{
// VectorBatchVectorAssign
for (int i = 0; i < batch_size; ++i)
{
float *output_data = output_ptr + i * num_units;
const float *bias_data = bias_ptr;
for (int j = 0; j < num_units; ++j)
{
*output_data++ = *bias_data++;
}
}
}
else
{
float *output_data = output_ptr;
for (int i = 0; i < batch_size * num_units; ++i)
{
*output_data++ = 0.0f;
}
}

// Reduction sum.
for (int b = 0; b < batch_size; ++b)
{
float *output_ptr_batch = output_ptr + b * num_units;
float *scratch_ptr_batch = scratch_ptr + b * num_filters;

// Reduction sum vector
for (int i = 0; i < num_units; ++i)
{
for (int j = 0; j < rank; j++)
{
output_ptr_batch[i] += *scratch_ptr_batch++;
}
}
}

// Apply activation.
for (int b = 0; b < batch_size; ++b)
{
float *output_ptr_batch = output_ptr + b * num_units;
for (int i = 0; i < num_units; ++i)
{
*output_ptr_batch = activationValFloat(activation, *output_ptr_batch);
++output_ptr_batch;
}
}
}

} // namespace

OMStatus SVDF(const float *input_data, const float *weights_feature_data,
const float *weights_time_data, const float *bias_data, float *state_data,
float *scratch_data, float *output_data, const int rank, const int input_size,
const int batch_size, const int num_filters, const int num_units,
const int memory_size, const circle::ActivationFunctionType activation)
{
// Left shift the activation_state.
{
float *new_state_start = state_data;
const float *old_state_start = state_data + 1;
const float *old_state_end = state_data + batch_size * num_filters * memory_size;
while (old_state_start != old_state_end)
{
*new_state_start++ = *old_state_start++;
}
}

// Note: no need to clear the latest activation, matmul is not accumulative.

// Compute conv1d(inputs, weights_feature).
// The activation_state's rightmost column is used to save current cycle
// activation. This is achieved by starting at state_ptr[memory_size - 1] and
// having the stride equal to memory_size.

// Perform batched matrix vector multiply operation:
{
const float *matrix = weights_feature_data;
const float *vector = input_data;
float *result = &state_data[memory_size - 1];
float *result_in_batch = result;
for (int i = 0; i < batch_size; ++i)
{
const float *matrix_ptr = matrix;
for (int j = 0; j < num_filters; ++j)
{
float dot_prod = 0.0f;
const float *vector_in_batch = vector + i * input_size;
for (int k = 0; k < input_size; ++k)
{
dot_prod += *matrix_ptr++ * *vector_in_batch++;
}
*result_in_batch = dot_prod;
result_in_batch += memory_size;
}
}
}

applyTimeWeightsBiasAndActivation(batch_size, memory_size, num_filters, num_units, rank,
weights_time_data, bias_data, activation, state_data,
scratch_data, output_data);
return Ok;
}

} // namespace pal
} // namespace execute
} // namespace onert_micro

#endif // ONERT_MICRO_EXECUTE_PAL_SVDF_COMMON_H
2 changes: 1 addition & 1 deletion onert-micro/onert-micro/include/pal/mcu/KernelsToBuild.lst
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ REGISTER_KERNEL(TRANSPOSE_CONV, TransposeConv)
REGISTER_KERNEL(SOFTMAX, Softmax)
#/*REGISTER_KERNEL(SUM, Sum)*/
#/*REGISTER_KERNEL(SELECT_V2, SelectV2)*/
#/*REGISTER_KERNEL(SVDF, SVDF)*/
REGISTER_KERNEL(SVDF, SVDF)
REGISTER_KERNEL(WHILE, While)
#/*REGISTER_KERNEL(UNIDIRECTIONAL_SEQUENCE_LSTM, UnidirectionalSequenceLSTM)*/
#/*REGISTER_KERNEL(RESIZE_BILINEAR, ResizeBilinear)*/
Expand Down
23 changes: 23 additions & 0 deletions onert-micro/onert-micro/include/pal/mcu/PALSVDF.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef ONERT_MICRO_EXECUTE_PAL_SVDF_H
#define ONERT_MICRO_EXECUTE_PAL_SVDF_H

#include "PALSVDFCommon.h"

#endif // ONERT_MICRO_EXECUTE_PAL_SVDF_H
Loading
Loading