-
-
Notifications
You must be signed in to change notification settings - Fork 206
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
525 additions
and
456 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
@testitem "BPINN PDE I: 2D Periodic System" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters t | ||
@variables u(..) | ||
Dt = Differential(t) | ||
eq = Dt(u(t)) - cospi(2t) ~ 0 | ||
bcs = [u(0.0) ~ 0.0] | ||
domains = [t ∈ Interval(0.0, 2.0)] | ||
|
||
chainl = Chain(Dense(1, 6, tanh), Dense(6, 1)) | ||
initl, st = Lux.setup(Random.default_rng(), chainl) | ||
@named pde_system = PDESystem(eq, bcs, domains, [t], [u(t)]) | ||
|
||
# non adaptive case | ||
discretization = BayesianPINN([chainl], GridTraining([0.01])) | ||
|
||
sol1 = ahmc_bayesian_pinn_pde( | ||
pde_system, discretization; draw_samples = 1500, bcstd = [0.02], | ||
phystd = [0.01], priorsNNw = (0.0, 1.0), saveats = [1 / 50.0]) | ||
|
||
analytic_sol_func(u0, t) = u0 + sinpi(2t) / (2pi) | ||
ts = vec(sol1.timepoints[1]) | ||
u_real = [analytic_sol_func(0.0, t) for t in ts] | ||
u_predict = pmean(sol1.ensemblesol[1]) | ||
|
||
@test u_predict≈u_real atol=0.5 | ||
@test mean(u_predict .- u_real) < 0.1 | ||
end | ||
|
||
@testitem "BPINN PDE II: 1D ODE" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters θ | ||
@variables u(..) | ||
Dθ = Differential(θ) | ||
|
||
# 1D ODE | ||
eq = Dθ(u(θ)) ~ θ^3 + 2.0f0 * θ + (θ^2) * ((1.0f0 + 3 * (θ^2)) / (1.0f0 + θ + (θ^3))) - | ||
u(θ) * (θ + ((1.0f0 + 3.0f0 * (θ^2)) / (1.0f0 + θ + θ^3))) | ||
|
||
# Initial and boundary conditions | ||
bcs = [u(0.0) ~ 1.0f0] | ||
|
||
# Space and time domains | ||
domains = [θ ∈ Interval(0.0f0, 1.0f0)] | ||
|
||
# Discretization | ||
dt = 0.1f0 | ||
|
||
# Neural network | ||
chain = Chain(Dense(1, 12, σ), Dense(12, 1)) | ||
|
||
discretization = BayesianPINN([chain], GridTraining([0.01])) | ||
|
||
@named pde_system = PDESystem(eq, bcs, domains, [θ], [u]) | ||
|
||
sol1 = ahmc_bayesian_pinn_pde( | ||
pde_system, discretization; draw_samples = 500, bcstd = [0.1], | ||
phystd = [0.05], priorsNNw = (0.0, 10.0), saveats = [1 / 100.0]) | ||
|
||
analytic_sol_func(t) = exp(-(t^2) / 2) / (1 + t + t^3) + t^2 | ||
ts = sol1.timepoints[1] | ||
u_real = vec([analytic_sol_func(t) for t in ts]) | ||
u_predict = pmean(sol1.ensemblesol[1]) | ||
@test u_predict≈u_real atol=0.8 | ||
end | ||
|
||
@testitem "BPINN PDE III: 3rd Degree ODE" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters x | ||
@variables u(..), Dxu(..), Dxxu(..), O1(..), O2(..) | ||
Dxxx = Differential(x)^3 | ||
Dx = Differential(x) | ||
|
||
# ODE | ||
eq = Dx(Dxxu(x)) ~ cospi(x) | ||
|
||
# Initial and boundary conditions | ||
ep = (cbrt(eps(eltype(Float64))))^2 / 6 | ||
|
||
bcs = [ | ||
u(0.0) ~ 0.0, | ||
u(1.0) ~ cospi(1.0), | ||
Dxu(1.0) ~ 1.0, | ||
Dxu(x) ~ Dx(u(x)) + ep * O1(x), | ||
Dxxu(x) ~ Dx(Dxu(x)) + ep * O2(x) | ||
] | ||
|
||
# Space and time domains | ||
domains = [x ∈ Interval(0.0, 1.0)] | ||
|
||
# Neural network | ||
chain = [ | ||
Chain(Dense(1, 10, tanh), Dense(10, 10, tanh), Dense(10, 1)), | ||
Chain(Dense(1, 10, tanh), Dense(10, 10, tanh), Dense(10, 1)), | ||
Chain(Dense(1, 10, tanh), Dense(10, 10, tanh), Dense(10, 1)), | ||
Chain(Dense(1, 4, tanh), Dense(4, 1)), | ||
Chain(Dense(1, 4, tanh), Dense(4, 1)) | ||
] | ||
|
||
discretization = BayesianPINN(chain, GridTraining(0.01)) | ||
|
||
@named pde_system = PDESystem(eq, bcs, domains, [x], | ||
[u(x), Dxu(x), Dxxu(x), O1(x), O2(x)]) | ||
|
||
sol1 = ahmc_bayesian_pinn_pde(pde_system, discretization; draw_samples = 200, | ||
bcstd = [0.01, 0.01, 0.01, 0.01, 0.01], phystd = [0.005], | ||
priorsNNw = (0.0, 10.0), saveats = [1 / 100.0]) | ||
|
||
analytic_sol_func(x) = (π * x * (-x + (π^2) * (2 * x - 3) + 1) - sinpi(x)) / (π^3) | ||
|
||
u_predict = pmean(sol1.ensemblesol[1]) | ||
xs = vec(sol1.timepoints[1]) | ||
u_real = [analytic_sol_func(x) for x in xs] | ||
@test u_predict≈u_real atol=0.5 | ||
end | ||
|
||
@testitem "BPINN PDE IV: 2D Poisson" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters x y | ||
@variables u(..) | ||
Dxx = Differential(x)^2 | ||
Dyy = Differential(y)^2 | ||
|
||
# 2D PDE | ||
eq = Dxx(u(x, y)) + Dyy(u(x, y)) ~ -sin(pi * x) * sin(pi * y) | ||
|
||
# Boundary conditions | ||
bcs = [ | ||
u(0, y) ~ 0.0, | ||
u(1, y) ~ 0.0, | ||
u(x, 0) ~ 0.0, | ||
u(x, 1) ~ 0.0 | ||
] | ||
|
||
# Space and time domains | ||
domains = [x ∈ Interval(0.0, 1.0), y ∈ Interval(0.0, 1.0)] | ||
|
||
# Discretization | ||
dt = 0.1f0 | ||
|
||
# Neural network | ||
chain = Chain(Dense(2, 9, σ), Dense(9, 9, σ), Dense(9, 1)) | ||
|
||
dx = 0.04 | ||
discretization = BayesianPINN(chain, GridTraining(dx)) | ||
|
||
@named pde_system = PDESystem(eq, bcs, domains, [x, y], [u(x, y)]) | ||
|
||
sol = ahmc_bayesian_pinn_pde(pde_system, discretization; draw_samples = 200, | ||
bcstd = [0.003, 0.003, 0.003, 0.003], phystd = [0.003], | ||
priorsNNw = (0.0, 10.0), saveats = [1 / 100.0, 1 / 100.0]) | ||
|
||
xs = sol.timepoints[1] | ||
analytic_sol_func(x, y) = (sinpi(x) * sinpi(y)) / (2pi^2) | ||
|
||
u_predict = pmean(sol.ensemblesol[1]) | ||
u_real = [analytic_sol_func(xs[:, i][1], xs[:, i][2]) for i in 1:length(xs[1, :])] | ||
@test u_predict≈u_real rtol=0.5 | ||
end | ||
|
||
@testitem "Translating from Flux" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
import Flux | ||
|
||
Random.seed!(100) | ||
|
||
@parameters θ | ||
@variables u(..) | ||
Dθ = Differential(θ) | ||
|
||
# 1D ODE | ||
eq = Dθ(u(θ)) ~ θ^3 + 2.0f0 * θ + (θ^2) * ((1.0f0 + 3 * (θ^2)) / (1.0f0 + θ + (θ^3))) - | ||
u(θ) * (θ + ((1.0f0 + 3.0f0 * (θ^2)) / (1.0f0 + θ + θ^3))) | ||
|
||
# Initial and boundary conditions | ||
bcs = [u(0.0) ~ 1.0f0] | ||
|
||
# Space and time domains | ||
domains = [θ ∈ Interval(0.0f0, 1.0f0)] | ||
|
||
# Neural network | ||
chain = Flux.Chain(Flux.Dense(1, 12, Flux.σ), Flux.Dense(12, 1)) | ||
|
||
discretization = BayesianPINN([chain], GridTraining([0.01])) | ||
@test discretization.chain[1] isa Lux.AbstractLuxLayer | ||
|
||
@named pde_system = PDESystem(eq, bcs, domains, [θ], [u]) | ||
|
||
sol = ahmc_bayesian_pinn_pde(pde_system, discretization; draw_samples = 500, | ||
bcstd = [0.1], phystd = [0.05], priorsNNw = (0.0, 10.0), saveats = [1 / 100.0]) | ||
|
||
analytic_sol_func(t) = exp(-(t^2) / 2) / (1 + t + t^3) + t^2 | ||
ts = sol.timepoints[1] | ||
u_real = [analytic_sol_func(t) for t in ts] | ||
u_predict = pmean(sol.ensemblesol[1]) | ||
|
||
@test u_predict≈u_real atol=0.8 | ||
end | ||
|
||
@testitem "BPINN PDE Inv I: 1D Periodic System" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters t p | ||
@variables u(..) | ||
|
||
Dt = Differential(t) | ||
eqs = Dt(u(t)) - cos(p * t) ~ 0 | ||
bcs = [u(0) ~ 0.0] | ||
domains = [t ∈ Interval(0.0, 2.0)] | ||
|
||
chainl = Lux.Chain(Lux.Dense(1, 6, tanh), Lux.Dense(6, 1)) | ||
initl, st = Lux.setup(Random.default_rng(), chainl) | ||
|
||
@named pde_system = PDESystem(eqs, | ||
bcs, | ||
domains, | ||
[t], | ||
[u(t)], | ||
[p], | ||
defaults = Dict([p => 4.0])) | ||
|
||
analytic_sol_func1(u0, t) = u0 + sinpi(2t) / (2π) | ||
timepoints = collect(0.0:(1 / 100.0):2.0) | ||
u = [analytic_sol_func1(0.0, timepoint) for timepoint in timepoints] | ||
u = u .+ (u .* 0.2) .* randn(size(u)) | ||
dataset = [hcat(u, timepoints)] | ||
|
||
@testset "$(nameof(typeof(strategy)))" for strategy in [ | ||
StochasticTraining(200), | ||
QuasiRandomTraining(200), | ||
GridTraining([0.02]) | ||
] | ||
discretization = BayesianPINN([chainl], strategy; param_estim = true, | ||
dataset = [dataset, nothing]) | ||
|
||
sol1 = ahmc_bayesian_pinn_pde(pde_system, | ||
discretization; | ||
draw_samples = 1500, | ||
bcstd = [0.05], | ||
phystd = [0.01], l2std = [0.01], | ||
priorsNNw = (0.0, 1.0), | ||
saveats = [1 / 50.0], | ||
param = [LogNormal(6.0, 0.5)]) | ||
|
||
param = 2 * π | ||
ts = vec(sol1.timepoints[1]) | ||
u_real = [analytic_sol_func1(0.0, t) for t in ts] | ||
u_predict = pmean(sol1.ensemblesol[1]) | ||
|
||
@test u_predict≈u_real atol=1.5 | ||
@test mean(u_predict .- u_real) < 0.1 | ||
@test sol1.estimated_de_params[1]≈param atol=param * 0.3 | ||
end | ||
end | ||
|
||
@testitem "BPINN PDE Inv II: Lorenz System" tags=[:pdebpinn] begin | ||
using MCMCChains, Lux, ModelingToolkit, Distributions, OrdinaryDiffEq, | ||
AdvancedHMC, Statistics, Random, Functors, NeuralPDE, MonteCarloMeasurements, | ||
ComponentArrays | ||
import ModelingToolkit: Interval, infimum, supremum | ||
|
||
Random.seed!(100) | ||
|
||
@parameters t, σ_ | ||
@variables x(..), y(..), z(..) | ||
Dt = Differential(t) | ||
eqs = [ | ||
Dt(x(t)) ~ σ_ * (y(t) - x(t)), | ||
Dt(y(t)) ~ x(t) * (28.0 - z(t)) - y(t), | ||
Dt(z(t)) ~ x(t) * y(t) - 8.0 / 3.0 * z(t) | ||
] | ||
|
||
bcs = [x(0) ~ 1.0, y(0) ~ 0.0, z(0) ~ 0.0] | ||
domains = [t ∈ Interval(0.0, 1.0)] | ||
|
||
input_ = length(domains) | ||
n = 7 | ||
chain = [ | ||
Chain(Dense(input_, n, tanh), Dense(n, n, tanh), Dense(n, 1)), | ||
Chain(Dense(input_, n, tanh), Dense(n, n, tanh), Dense(n, 1)), | ||
Chain(Dense(input_, n, tanh), Dense(n, n, tanh), Dense(n, 1)) | ||
] | ||
|
||
# Generate Data | ||
function lorenz!(du, u, p, t) | ||
du[1] = 10.0 * (u[2] - u[1]) | ||
du[2] = u[1] * (28.0 - u[3]) - u[2] | ||
du[3] = u[1] * u[2] - (8.0 / 3.0) * u[3] | ||
end | ||
|
||
u0 = [1.0; 0.0; 0.0] | ||
tspan = (0.0, 1.0) | ||
prob = ODEProblem(lorenz!, u0, tspan) | ||
sol = solve(prob, Tsit5(), dt = 0.01, saveat = 0.05) | ||
ts = sol.t | ||
us = hcat(sol.u...) | ||
us = us .+ ((0.05 .* randn(size(us))) .* us) | ||
ts_ = hcat(sol(ts).t...)[1, :] | ||
dataset = [hcat(us[i, :], ts_) for i in 1:3] | ||
|
||
discretization = BayesianPINN(chain, GridTraining([0.01]); param_estim = true, | ||
dataset = [dataset, nothing]) | ||
|
||
@named pde_system = PDESystem(eqs, bcs, domains, | ||
[t], [x(t), y(t), z(t)], [σ_], defaults = Dict([p => 1.0 for p in [σ_]])) | ||
|
||
sol1 = ahmc_bayesian_pinn_pde(pde_system, | ||
discretization; | ||
draw_samples = 50, | ||
bcstd = [0.3, 0.3, 0.3], | ||
phystd = [0.1, 0.1, 0.1], | ||
l2std = [1, 1, 1], | ||
priorsNNw = (0.0, 1.0), | ||
saveats = [0.01], | ||
param = [Normal(12.0, 2)]) | ||
|
||
idealp = 10.0 | ||
p_ = sol1.estimated_de_params[1] | ||
@test sum(abs, pmean(p_) - 10.00) < 0.3 * idealp[1] | ||
# @test sum(abs, pmean(p_[2]) - (8 / 3)) < 0.3 * idealp[2] | ||
end |
Oops, something went wrong.