-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f989f09
commit d338926
Showing
2 changed files
with
89 additions
and
87 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from datetime import timedelta | ||
from math import log2 | ||
from transformers import GPT2LMHeadModel, RobertaTokenizerFast | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
NUM_GENERATIONS = 1 | ||
MIN_CHARS = 6 | ||
MAX_CHARS = 10 | ||
|
||
def tier(ttd: timedelta): | ||
tiers = ["Pathetic", "Low", "Medium", "High", "Extreme"] | ||
for i, tier in enumerate(tiers[:-1]): | ||
threshold = timedelta(days=365*pow(10, i)) | ||
|
||
if ttd < threshold: | ||
return tier | ||
|
||
return tiers[-1] | ||
|
||
def calculate_password_entropy(predefined_password): | ||
assert len(predefined_password) >= MIN_CHARS, "Too short password" | ||
assert len(predefined_password) <= MAX_CHARS, "Too long password" | ||
|
||
tokenizer = RobertaTokenizerFast.from_pretrained( | ||
"javirandor/passgpt-10characters", | ||
model_max_length=MAX_CHARS + 2, # Max length + start and end tokens | ||
padding="max_length", | ||
truncation=True, | ||
do_lower_case=False, | ||
strip_accents=False, | ||
mask_token="<mask>", | ||
unk_token="<unk>", | ||
pad_token="<pad>", | ||
truncation_side="right", | ||
) | ||
|
||
predefined_tokens = tokenizer(predefined_password, return_tensors="pt")["input_ids"][0][1:] | ||
|
||
model = GPT2LMHeadModel.from_pretrained("javirandor/passgpt-10characters").eval() | ||
|
||
# Manually generate the sequence step-by-step based on predefined password | ||
generated = torch.tensor([[tokenizer.bos_token_id]]) | ||
entropy = 0 | ||
|
||
for idx, token in enumerate(predefined_tokens): | ||
outputs = model(generated) | ||
next_token_logits = outputs.logits[:, -1, :] | ||
|
||
# Calculate probabilities | ||
probabilities = F.softmax(next_token_logits, dim=-1) | ||
|
||
# Choose the next token from the predefined password | ||
next_token = token.unsqueeze(0).unsqueeze(0) | ||
|
||
# Print the probability of the chosen token | ||
chosen_token_prob = probabilities[0, token].item() | ||
chosen_token_str = tokenizer.convert_ids_to_tokens([token.item()])[0] | ||
|
||
# Add to entropy | ||
try: | ||
entropy += -log2(chosen_token_prob) | ||
except ValueError: | ||
entropy += 10e10 | ||
|
||
# Append the chosen token to the generated sequence | ||
generated = torch.cat((generated, next_token), dim=1) | ||
|
||
return entropy | ||
|
||
def main(): | ||
# Input a predefined password from the user | ||
predefined_password = input("Enter a password: ") | ||
entropy = calculate_password_entropy(predefined_password) | ||
print("Password entropy:", entropy) | ||
|
||
ttd = timedelta(seconds=10e-9 * pow(2, entropy)) | ||
years = ttd.days // 365 | ||
days = ttd.days % 365 | ||
hours, remainder = divmod(ttd.seconds, 3600) | ||
minutes, seconds = divmod(remainder, 60) | ||
|
||
print("Time to decode with 1Gh/s:", | ||
f"{years} years {days} days {hours} hours {minutes} minutes {seconds} seconds") | ||
|
||
print("Tier:", tier(ttd)) | ||
|
||
if __name__ == "__main__": | ||
main() |