-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Major improvements 48-term density equation introduced (intended for use by observational, theoretical oceanographers and ocean modellers). The use of a single density equation will ensure a unified field. the Absolute Salinity Anomaly takes into account evaporation and dilution.
- Loading branch information
1 parent
f0c5be3
commit ce64332
Showing
209 changed files
with
17,422 additions
and
6,121 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
function Absolute_Pressure = gsw_Abs_Pressure_from_p(p) | ||
|
||
% gsw_Abs_Pressure_from_p Absolute Pressure | ||
%========================================================================== | ||
% | ||
% USAGE: | ||
% Absolute_Pressure = gsw_Abs_Pressure_from_p(p) | ||
% | ||
% DESCRIPTION: | ||
% Calculates Absolute Pressure from sea pressure. Note that Absolute | ||
% Pressure is in Pa NOT dbar. | ||
% | ||
% INPUT: | ||
% p = sea pressure [ dbar ] | ||
% | ||
% OUTPUT: | ||
% Absolute_Pressure = Absolute Pressure [ Pa ] | ||
% | ||
% AUTHOR: | ||
% Trevor McDougall and Paul Barker [ [email protected] ] | ||
% | ||
% VERSION NUMBER: 3.0 (29th March, 2011) | ||
% | ||
% REFERENCES: | ||
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of | ||
% seawater - 2010: Calculation and use of thermodynamic properties. | ||
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, | ||
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org. | ||
% See Eqn. (2.2.1) of this TEOS-10 Manual. | ||
% | ||
% The software is available from http://www.TEOS-10.org | ||
% | ||
%========================================================================== | ||
|
||
if ~(nargin == 1) | ||
error('gsw_Abs_Pressure_from_p: Requires one input') | ||
end | ||
|
||
db2Pa = 1e4; | ||
|
||
Absolute_Pressure = p*db2Pa + 101325; | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
function C3515 = gsw_C3515 | ||
|
||
% gsw_C3515 Conductivity of SSW at SP=35,t_68=15,p=0 | ||
%========================================================================== | ||
% | ||
% USAGE: | ||
% C3515 = gsw_C3515 | ||
% | ||
% DESCRIPTION: | ||
% This function provides the present estimate of Conductivity, C, of | ||
% Standard Seawater (SSW) at (SP=35, t_68=15, p=0) which is | ||
% 42.9140 mS/cm (=4.29140 S/m) (Culkin and Smith, 1980; UNESCO, 1983). | ||
% | ||
% OUTPUT: | ||
% C3515 = Conductivity at (SP=35, t_68=15, p=0) [ mS/cm ] | ||
% | ||
% AUTHOR: | ||
% Trevor McDougall and Paul Barker [ [email protected] ] | ||
% | ||
% VERSION NUMBER: 3.0 (29th March, 2011) | ||
% | ||
% REFERENCES: | ||
% Culkin and Smith, 1980: Determination of the Concentration of Potassium | ||
% Chloride Solution Having the Same Electrical Conductivity, at 15C and | ||
% Infinite Frequency, as Standard Seawater of Salinity 35.0000 | ||
% (Chlorinity 19.37394), IEEE J. Oceanic Eng, 5, 22-23. | ||
% | ||
% Unesco, 1983: Algorithms for computation of fundamental properties of | ||
% seawater. Unesco Technical Papers in Marine Science, 44, 53 pp. | ||
% | ||
% The software is available from http://www.TEOS-10.org | ||
% | ||
%========================================================================== | ||
|
||
C3515 = 42.9140; | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -25,29 +25,23 @@ | |
% CT_SA = The derivative of Conservative Temperature with respect to | ||
% Absolute Salinity at constant potential temperature | ||
% (the regular potential temperature which has reference | ||
% sea pressure of 0 dbar). The CT_SA output has units of: | ||
% [ K/(g/kg)] | ||
% sea pressure of 0 dbar). | ||
% The CT_SA output has units of: [ K/(g/kg)] | ||
% CT_pt = The derivative of Conservative Temperature with respect to | ||
% potential temperature (the regular one with pr = 0 dbar) | ||
% at constant SA. CT_pt is dimensionless. [ unitless ] | ||
% | ||
% AUTHOR: | ||
% Trevor McDougall and Paul Barker [ [email protected] ] | ||
% Trevor McDougall and Paul Barker [ [email protected] ] | ||
% | ||
% VERSION NUMBER: 2.0 (26th August, 2010) | ||
% VERSION NUMBER: 3.0 (11th April 2011) | ||
% | ||
% REFERENCES: | ||
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of | ||
% seawater - 2010: Calculation and use of thermodynamic properties. | ||
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, | ||
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org. | ||
% See Eqns. (A.12.3) and (A.12.9a,b) of this TEOS-10 Manual. | ||
% | ||
% McDougall T. J., D. R. Jackett, P. M. Barker, C. Roberts-Thomson, R. | ||
% Feistel and R. W. Hallberg, 2010: A computationally efficient 25-term | ||
% expression for the density of seawater in terms of Conservative | ||
% Temperature, and related properties of seawater. To be submitted | ||
% to Ocean Science Discussions. | ||
% See Eqns. (A.12.3a,b) and (A.15.8) of this TEOS-10 Manual. | ||
% | ||
% This software is available from http://www.TEOS-10.org | ||
% | ||
|
@@ -73,8 +67,8 @@ | |
end | ||
|
||
if ms == 1 | ||
SA = SA'; | ||
pt = pt'; | ||
SA = SA.'; | ||
pt = pt.'; | ||
transposed = 1; | ||
else | ||
transposed = 0; | ||
|
@@ -86,19 +80,46 @@ | |
|
||
cp0 = 3991.86795711963; % from Eqn. 3.3.3 of IOC et al. (2010). | ||
n0 = 0; | ||
n1 = 1; | ||
n2 = 2; | ||
pr0 = zeros(size(SA)); | ||
abs_pt = 273.15 + pt; | ||
|
||
CT_SA = (gsw_gibbs(n1,n0,n0,SA,pt,pr0) -... | ||
abs_pt.*gsw_gibbs(n1,n1,n0,SA,pt,pr0))./cp0; | ||
|
||
CT_pt = - (abs_pt.*gsw_gibbs(n0,n2,n0,SA,pt,pr0))./cp0; | ||
|
||
%-------------------------------------------------------------------------- | ||
|
||
sfac = 0.0248826675584615; % sfac = 1/(40*(35.16504/35)). | ||
x2 = sfac.*SA; | ||
x = sqrt(x2); | ||
y_pt = 0.025*pt; | ||
|
||
g_SA_T_mod = 1187.3715515697959 + ... | ||
x.*(-1480.222530425046 + x.*(2175.341332000392 + x.*(-980.14153344888 + 220.542973797483.*x) + ... | ||
y_pt.*(-548.4580073635929 + y_pt.*(592.4012338275047 + y_pt.*(-274.2361238716608 + 49.9394019139016.*y_pt)))) + ... | ||
y_pt.*(-258.3988055868252 + y_pt.*(-90.2046337756875 + y_pt.*10.50720794170734))) + ... | ||
y_pt.*(3520.125411988816 + y_pt.*(-1351.605895580406 + ... | ||
y_pt.*(731.4083582010072 + y_pt.*(-216.60324087531103 + 25.56203650166196.*y_pt)))); | ||
g_SA_T_mod = 0.5*sfac*0.025*g_SA_T_mod; | ||
|
||
g_SA_mod = 8645.36753595126 + ... | ||
x.*(-7296.43987145382 + x.*(8103.20462414788 + ... | ||
y_pt.*(2175.341332000392 + y_pt.*(-274.2290036817964 + ... | ||
y_pt.*(197.4670779425016 + y_pt.*(-68.5590309679152 + 9.98788038278032.*y_pt)))) + ... | ||
x.*(-5458.34205214835 - 980.14153344888.*y_pt + ... | ||
x.*(2247.60742726704 - 340.1237483177863.*x + 220.542973797483.*y_pt))) + ... | ||
y_pt.*(-1480.222530425046 + ... | ||
y_pt.*(-129.1994027934126 + ... | ||
y_pt.*(-30.0682112585625 + y_pt.*(2.626801985426835 ))))) + ... | ||
y_pt.*(1187.3715515697959 + ... | ||
y_pt.*(1760.062705994408 + y_pt.*(-450.535298526802 + ... | ||
y_pt.*(182.8520895502518 + y_pt.*(-43.3206481750622 + 4.26033941694366.*y_pt))))); | ||
g_SA_mod = 0.5*sfac*g_SA_mod; | ||
|
||
CT_SA = (g_SA_mod - abs_pt.*g_SA_T_mod)./cp0; | ||
|
||
if transposed | ||
CT_SA = CT_SA'; | ||
CT_pt = CT_pt'; | ||
CT_SA = CT_SA.'; | ||
CT_pt = CT_pt.'; | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
function CT_freezing = gsw_CT_freezing(SA,p,saturation_fraction) | ||
|
||
% gsw_CT_freezing Conservative Temperature at which seawater freezes | ||
%========================================================================== | ||
% | ||
% USAGE: | ||
% CT_freezing = gsw_CT_freezing(SA,p,saturation_fraction) | ||
% | ||
% DESCRIPTION: | ||
% Calculates the Conservative Temperature at which seawater freezes. | ||
% | ||
% INPUT: | ||
% SA = Absolute Salinity [ g/kg ] | ||
% p = sea pressure [ dbar ] | ||
% ( i.e. absolute pressure - 10.1325 dbar ) | ||
% | ||
% OPTIONAL: | ||
% saturation_fraction = the saturation fraction of dissolved air in | ||
% seawater | ||
% (i.e., saturation_fraction must be between 0 and 1, and the default | ||
% is 1, completely saturated) | ||
% | ||
% p & saturation_fraction (if provided) may have dimensions 1x1 or Mx1 or | ||
% 1xN or MxN, where SA is MxN. | ||
% | ||
% OUTPUT: | ||
% CT_freezing = Conservative Temperature at freezing of seawater [ deg C ] | ||
% That is, the freezing temperature expressed in | ||
% terms of Conservative Temperature (ITS-90). | ||
% | ||
% AUTHOR: | ||
% Trevor McDougall, Paul Barker and Rainer Feistal [ [email protected] ] | ||
% | ||
% VERSION NUMBER: 3.0 (4th November, 2011) | ||
% | ||
% REFERENCES: | ||
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of | ||
% seawater - 2010: Calculation and use of thermodynamic properties. | ||
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, | ||
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org. | ||
% See sections 3.33 and 3.34 of this TEOS-10 Manual. | ||
% | ||
% The software is available from http://www.TEOS-10.org | ||
% | ||
%========================================================================== | ||
|
||
%-------------------------------------------------------------------------- | ||
% Check variables and resize if necessary | ||
%-------------------------------------------------------------------------- | ||
|
||
if ~(nargin == 2 | nargin == 3) | ||
error('gsw_CT_freezing: Requires either two or three inputs') | ||
end %if | ||
|
||
if ~exist('saturation_fraction','var') | ||
saturation_fraction = 1; | ||
end | ||
|
||
if (saturation_fraction < 0 | saturation_fraction > 1) | ||
error('gsw_CT_freezing: saturation_fraction MUST be between zero and one.') | ||
end | ||
|
||
[ms,ns] = size(SA); | ||
[mp,np] = size(p); | ||
[map,nap] = size(saturation_fraction); | ||
|
||
if (mp == 1) & (np == 1) % p scalar - fill to size of SA | ||
p = p*ones(size(SA)); | ||
elseif (ns == np) & (mp == 1) % p is row vector, | ||
p = p(ones(1,ms), :); % copy down each column. | ||
elseif (ms == mp) & (np == 1) % p is column vector, | ||
p = p(:,ones(1,ns)); % copy across each row. | ||
elseif (ns == mp) & (np == 1) % p is a transposed row vector, | ||
p = p.'; % transposed then | ||
p = p(ones(1,ms), :); % copy down each column. | ||
elseif (ms == mp) & (ns == np) | ||
% ok | ||
else | ||
error('gsw_CT_freezing: Inputs array dimensions arguments do not agree') | ||
end %if | ||
|
||
if (map == 1) & (nap == 1) % saturation_fraction scalar | ||
saturation_fraction = saturation_fraction*ones(size(SA)); % fill to size of SA | ||
elseif (ns == nap) & (map == 1) % saturation_fraction is row vector, | ||
saturation_fraction = saturation_fraction(ones(1,ms), :); % copy down each column. | ||
elseif (ms == map) & (nap == 1) % saturation_fraction is column vector, | ||
saturation_fraction = saturation_fraction(:,ones(1,ns)); % copy across each row. | ||
elseif (ns == map) & (nap == 1) % saturation_fraction is a transposed row vector, | ||
saturation_fraction = saturation_fraction.'; % transposed then | ||
saturation_fraction = saturation_fraction(ones(1,ms), :); % copy down each column. | ||
elseif (ms == map) & (ns == nap) | ||
% ok | ||
else | ||
error('gsw_CT_freezing: Inputs array dimensions arguments do not agree') | ||
end %if | ||
|
||
if ms == 1 | ||
SA = SA.'; | ||
p = p.'; | ||
saturation_fraction = saturation_fraction.'; | ||
transposed = 1; | ||
else | ||
transposed = 0; | ||
end | ||
|
||
%-------------------------------------------------------------------------- | ||
% Start of the calculation | ||
%-------------------------------------------------------------------------- | ||
|
||
% These few lines ensure that SA is non-negative. | ||
[I_neg_SA] = find(SA < 0); | ||
if ~isempty(I_neg_SA) | ||
error(' gsw_CT_freezing: SA must be non-negative!') | ||
end | ||
|
||
c0 = 0.017947064327968736; | ||
% | ||
c1 = -6.076099099929818; | ||
c2 = 4.883198653547851; | ||
c3 = -11.88081601230542; | ||
c4 = 13.34658511480257; | ||
c5 = -8.722761043208607; | ||
c6 = 2.082038908808201; | ||
% | ||
c7 = -7.389420998107497; | ||
c8 = -2.110913185058476; | ||
c9 = 0.2295491578006229; | ||
% | ||
c10 = -0.9891538123307282; | ||
c11 = -0.08987150128406496; | ||
c12 = 0.3831132432071728; | ||
c13 = 1.054318231187074; | ||
c14 = 1.065556599652796; | ||
c15 = -0.7997496801694032; | ||
c16 = 0.3850133554097069; | ||
c17 = -2.078616693017569; | ||
c18 = 0.8756340772729538; | ||
c19 = -2.079022768390933; | ||
c20 = 1.596435439942262; | ||
c21 = 0.1338002171109174; | ||
c22 = 1.242891021876471; | ||
|
||
SA_r = SA.*1e-2; | ||
x = sqrt(SA_r); | ||
p_r = p.*1e-4; | ||
|
||
CT_freezing = c0 ... | ||
+ SA_r.*(c1 + x.*(c2 + x.*(c3 + x.*(c4 + x.*(c5 + c6.*x))))) ... | ||
+ p_r.*(c7 + p_r.*(c8 + c9.*p_r)) ... | ||
+ SA_r.*p_r.*(c10 + p_r.*(c12 + p_r.*(c15 + c21.*SA_r)) + SA_r.*(c13 + c17.*p_r + c19.*SA_r) ... | ||
+ x.*(c11 + p_r.*(c14 + c18.*p_r) + SA_r.*(c16 + c20.*p_r + c22.*SA_r))); | ||
|
||
% The error of this fit ranges between -5e-4 K and 6e-4 K when compared | ||
% with the Conservative Temperature calculated from the exact in-situ | ||
% freezing temperature which is found by a Newton-Raphson iteration of the | ||
% equality of the chemical potentials of water in seawater and in ice. | ||
% (Note that the in-situ freezing temperature can be found by this exact | ||
% method using the function sea_ice_freezingtemperature_si in the SIA | ||
% library). | ||
|
||
% Adjust for the effects of dissolved air | ||
a = 0.014289763856964; % Note that a = 0.502500117621/35.16504. | ||
b = 0.057000649899720; | ||
CT_freezing = CT_freezing ... | ||
- saturation_fraction.*(1e-3).*(2.4 - a.*SA).*(1 + b.*(1 - SA./35.16504)); | ||
|
||
[Iout_of_range] = find(p > 10000 | SA > 120 | ... | ||
p + SA.*71.428571428571402 > 13571.42857142857); | ||
if ~isempty(Iout_of_range) | ||
CT_freezing(Iout_of_range) = NaN; | ||
end | ||
|
||
if transposed | ||
CT_freezing = CT_freezing.'; | ||
end | ||
|
||
end |
Oops, something went wrong.