Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Solution to 1.3 Limits-Analytically-(LT3) #481

Merged
merged 10 commits into from
Feb 7, 2025
140 changes: 133 additions & 7 deletions source/calculus/source/01-LT/03.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,12 @@
<li><m>\displaystyle \lim_{x \to 2}f(x) \approx f(2)</m></li>
<li><m>\displaystyle \lim_{x \to 2}f(x) \neq f(2)</m></li>
</ol>
<answer>
<p>
<m> f(2)= 15 </m> and
<m>\displaystyle \lim_{x \to 2}f(x)=f(2)</m>
</p>
</answer>
</activity>

<activity xml:id="activity-limits-analytically2">
Expand Down Expand Up @@ -141,6 +147,11 @@
<li><m>\displaystyle \lim_{x\to 7}\left( f(x)+g(x) \right) = \lim_{x\to 7}f(x) + \lim_{x\to 7}g(x)</m></li>
<li><m>\displaystyle \lim_{x\to 7}\left( f(x)g(x) \right) =f(7) \left( \lim_{x\to 7}g(x) \right)</m></li>
</ol>
<answer>
<p>
D. <m>\displaystyle \lim_{x\to 7}\left( f(x)g(x) \right) =f(7) \left( \lim_{x\to 7}g(x) \right)</m>
</p>
</answer>
</activity>

<remark><p> In <xref ref="activity-limits-analytically2"/> we observed that limits seem to be "well-behaved" when combined with standard operations on functions. The next theorems, known as <term>Limit Laws</term>, tell us how limits interact with combinations of functions. </p></remark>
Expand Down Expand Up @@ -174,6 +185,17 @@
<li><m>\displaystyle \lim_{x\to 2} (f(x) - g(x)) = -2</m></li>
<li><m>\displaystyle \lim_{x\to 2} (f(x)/g(x)) = -2/3</m></li>
</ol>
<answer>
<p>
A. <m>\displaystyle \lim_{x\to 2} (f(x) \cdot g(x)) = -6</m>
</p>
<p>
B. <m>\displaystyle \lim_{x\to 2} (f(x) + g(x)) = -1</m>
</p>
<p>
D. <m>\displaystyle \lim_{x\to 2} (f(x)/g(x)) = -2/3</m>
</p>
</answer>
</statement>
</activity>

Expand Down Expand Up @@ -242,14 +264,40 @@
</sidebyside>
</introduction>
<task> <statement> <p> <m>\displaystyle \lim_{x \to 1} f(x) + g(x) </m>. </p>
<answer>
<p>
<m>\displaystyle \lim_{x \to 1} f(x) + g(x) = 2 </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p> <m>\displaystyle \lim_{x \to 5^+} 3f(x) </m>. </p>
<answer>
<p>
<m>\displaystyle \lim_{x \to 5^+} 3f(x)= 0 </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p> <m>\displaystyle \lim_{x \to 0^+ } f(x)g(x) </m>. </p>
<answer>
<p>
<m>\displaystyle \lim_{x \to 0^+ } f(x)g(x) = 0 </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p> (Challenge) <m>\displaystyle \lim_{x \to 1} g(x) / f(x) </m>. </p>
<answer>
<p>
<m>\displaystyle \lim_{x \to 1} g(x) / f(x) </m> does not exist
</p>
</answer>
</statement> </task>
<task> <statement> <p> (Challenge) <m>\displaystyle \lim_{x \to 0^+} f(g(x)) </m>. </p>

<task> <statement> <p> (Challenge) <m>\displaystyle \lim_{x \to 0^+} f(g(x)) </m>. </p>
<answer>
<p>
<m>\displaystyle \lim_{x \to 0^+} f(g(x)) </m> does not exist
</p>
</answer>
</statement> </task>
</activity>

Expand All @@ -264,6 +312,21 @@
<li>Power Law</li>
<li>Constant Law</li>
</ol>
<answer>
<p>
A. Sums/Difference Law
</p>
<p>
B. Scalar Multiple Law
</p>
<p>
D. Identity Law
</p>
<p>
F. Constant Law
</p>

</answer>
</statement>
</activity>

Expand All @@ -274,6 +337,7 @@
<statement>
<p>If <m>p(x)</m> is a polynomial and <m>c</m> is a real number, then <m>\displaystyle \lim_{x \to c} p(x) = p(c)</m>. This is also known as the <term>Direct Substitution Property</term><idx>Direct Substitution Property</idx> for polynomials.
</p>

</statement>
</theorem>

Expand All @@ -288,6 +352,11 @@
<li>Quotient and root law</li>

</ol>
<answer>
<p>
B. <xref ref="theorem-limits-polynomials"/> and the quotient law.
</p>
</answer>
</statement>
</activity>

Expand All @@ -306,6 +375,11 @@
<li>No, because if you graph <m>g(x)=\dfrac{x^2+1}{x-1}</m>, the value <m>g(1)</m> is not defined and the graph shows that the limit of <m>\displaystyle\lim_{x \to c}g(x)</m> does not exist.</li>
<li>Yes, because we can use <xref ref="theorem-limits-rationals"/>.</li>
</ol>
<answer>
<p>
B. Yes, because if you graph <m>f(x)=\dfrac{x^2-1}{x-1}</m>, the value <m>f(1)</m> is not defined, but the graph shows that the limit of <m>f(x)</m> does exist as <m>x \to 1</m>.
</p>
</answer>
</statement>
</activity>

Expand All @@ -319,6 +393,11 @@
<li><m>\displaystyle \lim_{x\to 0} (f(x)/g(x))</m> cannot be determined </li>
<li><m>\displaystyle \lim_{x\to 0} (f(x)/g(x))</m> does not exist </li>
</ol>
<answer>
<p>
B. <m>\displaystyle \lim_{x\to 0} (f(x)/g(x)) = 2 </m>
</p>
</answer>
</statement>
</activity>

Expand All @@ -338,12 +417,28 @@
<p>
Determine the following limits and explain your reasoning.
</p>
</introduction>
<task><me>\lim_{x\to-6 } \dfrac{ x^{2} - 6 \, x + 5 }{ x^{2} - 3 \, x - 18 }</me>
<answer>
<p>
<m>\dfrac{77}{36}</m>
</p>
</answer></task>
<task><me>\lim_{x\to-1 } \dfrac{ x^{2} - 1 }{ x^{2} + 3 \, x + 2 }</me>
<answer>
<p>
<m>-2</m>
</p>
</answer></task>
<task><me>\lim_{x\to5 } \dfrac{ x - 5 }{ \sqrt{x + 31} - 6 }</me>
<answer>
<p>
<m>12</m>
</p>
</answer>
</task>
StevenClontz marked this conversation as resolved.
Show resolved Hide resolved

</introduction>
<task><statement><p><me>\lim_{x\to-6 } \dfrac{ x^{2} - 6 \, x + 5 }{ x^{2} - 3 \, x - 18 }</me></p></statement></task>
<task><statement><p><me>\lim_{x\to-1 } \dfrac{ x^{2} - 1 }{ x^{2} + 3 \, x + 2 }</me></p></statement></task>
<task><statement><p><me>\lim_{x\to5 } \dfrac{ x - 5 }{ \sqrt{x + 31} - 6 }</me></p></statement></task>
</activity>
</activity>



Expand All @@ -356,16 +451,47 @@
<me> \lim_{h \to 0} \dfrac{f(a+h)-f(a)}{h}</me>. </note>
</introduction>
<task> <statement> <p> Compute the average velocity on the interval <m>[5,6]</m>. We think of this interval as <m>[5,5+h]</m> for the value of <m>h=1</m>.</p>
</statement> </task>
</statement>
<answer>
<p>
11
</p>
</answer>
</task>
<task> <statement> <p> Compute the average velocity starting at 5 seconds, but now with <m>h=0.5</m> seconds. </p>
<answer>
<p>
10.5
</p>
</answer>
</statement> </task>
<task> <statement> <p>We want to study the instantaneous velocity at <m>a=5</m> seconds. Find an expression for the average velocity on the interval <m>[5,5+h]</m>, where <m>h</m> is an unspecified value.</p>
<answer>
<p>
<m> \dfrac{(5+h)^{2}-5^{2}}{h} </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p>Expand your expression. When <m>h \neq 0</m>, you can simplify it!</p>
<answer>
<p>
<m> 10+h </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p>Recall that the instantaneous velocity is the limit of your expression as <m>h\to 0</m>. Find the instantaneous velocity given by this model at <m>t=5</m> seconds.</p>
<answer>
<p>
<m> 10 </m>
</p>
</answer>
</statement> </task>
<task> <statement> <p> The model <m>d=f(t)=t^2</m> does not really capture the real-world situation. Think of at least one reason why this model does not fit the scenario of Usain Bolt's 100 meters dash. </p>
<answer>
<p>
With this model, instantaneous rate of change increases as time passes and it doesn't capture that he slows down at the end, which is not a real-world situation.
</p>
</answer>
</statement> </task>
</activity>

Expand Down