Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implemented XLMRoberta sub-tasks #5

Merged
merged 7 commits into from
Apr 24, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion src/mlx_transformers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,4 +11,10 @@
RobertaForTokenClassification,
RobertaForQuestionAnswering
)
from .xlm_roberta import XLMRobertaModel
from .xlm_roberta import (
XLMRobertaModel,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaForQuestionAnswering
)

4 changes: 3 additions & 1 deletion src/mlx_transformers/models/roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -524,7 +524,9 @@ def __call__(
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == mx.array):
elif self.num_labels > 1 and (
labels.dtype == mx.long or labels.dtype == mx.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
Expand Down
231 changes: 230 additions & 1 deletion src/mlx_transformers/models/xlm_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,6 +451,235 @@ def __call__(
)


class XLMRobertaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""

def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

def __call__(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = mx.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x



class XLMRobertaForSequenceClassification(nn.Module):
def __init__(self, config):
pass
super().__init__()
self.num_labels = config.num_labels
self.config = config

self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
self.classifier = XLMRobertaClassificationHead(config)


def __call__(
self,
input_ids: Optional[mx.array] = None,
attention_mask: Optional[mx.array] = None,
token_type_ids: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
labels: Optional[mx.array] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[mx.array], SequenceClassifierOutput]:

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs.last_hidden_state
logits = self.classifier(sequence_output)

loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == mx.long or labels.dtype == mx.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"

if self.config.problem_type == "regression":
loss_fct = nn.losses.mse_loss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.losses.cross_entropy()
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same

loss = loss_fct(
logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.losses.binary_cross_entropy()
loss = loss_fct(logits, labels)

if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output

return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)


class XLMRobertaForTokenClassification(nn.Module):
def __init__(self, config):
super().__init__()
self.num_labels = config.num_labels
self.config = config

self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)


def __call__(
self,
input_ids: Optional[mx.array] = None,
attention_mask: Optional[mx.array] = None,
token_type_ids: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
labels: Optional[mx.array] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[mx.array], TokenClassifierOutput]:

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)

sequence_output = outputs.last_hidden_state

sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)

loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = nn.losses.cross_entropy()
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nn.losses.cross_entropy is a function so it should be loss_fct = nn.losses.cross_entropy

loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output

return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

class XLMRobertaForQuestionAnswering(nn.Module):
def __init__(self, config):
super().__init__()
self.num_labels = config.num_labels
self.config = config

self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

def __call__(
self,
input_ids: Optional[mx.array] = None,
attention_mask: Optional[mx.array] = None,
token_type_ids: Optional[mx.array] = None,
position_ids: Optional[mx.array] = None,
start_positions: Optional[mx.array] = None,
end_positions: Optional[mx.array] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[mx.array], QuestionAnsweringModelOutput]:

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)

sequence_output = outputs.last_hidden_state

logits = self.qa_outputs(sequence_output)
splits = logits.split(2, axis=-1)
start_logits, end_logits = splits[0], splits[1]
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)

total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs,
# we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)

loss_fct = nn.losses.cross_entropy()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2

if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) +
output) if total_loss is not None else output

return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
Loading
Loading