Skip to content

Commit

Permalink
Archimedean property of fraction-ℤ (#1261)
Browse files Browse the repository at this point in the history
  • Loading branch information
lowasser authored Feb 4, 2025
1 parent bd003ab commit fb4dd23
Show file tree
Hide file tree
Showing 2 changed files with 64 additions and 0 deletions.
1 change: 1 addition & 0 deletions src/elementary-number-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ open import elementary-number-theory.addition-natural-numbers public
open import elementary-number-theory.addition-positive-and-negative-integers public
open import elementary-number-theory.addition-rational-numbers public
open import elementary-number-theory.additive-group-of-rational-numbers public
open import elementary-number-theory.archimedean-property-integer-fractions public
open import elementary-number-theory.archimedean-property-integers public
open import elementary-number-theory.archimedean-property-natural-numbers public
open import elementary-number-theory.arithmetic-functions public
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# The Archimedean property of integer fractions

```agda
{-# OPTIONS --lossy-unification #-}

module elementary-number-theory.archimedean-property-integer-fractions where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.archimedean-property-integers
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.integers
open import elementary-number-theory.multiplication-integer-fractions
open import elementary-number-theory.multiplication-integers
open import elementary-number-theory.multiplication-positive-and-negative-integers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-integer-fractions
open import elementary-number-theory.strict-inequality-integer-fractions
open import elementary-number-theory.strict-inequality-integers

open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.transport-along-identifications
```

</details>

## Definition

The Archimedean property of the integer fractions is that for any
`x y : fraction-ℤ`, with positive `x`, there is an `n : ℕ` such that `y` is less
than `n` as an integer fraction times `x`.

```agda
abstract
archimedean-property-fraction-ℤ :
(x y : fraction-ℤ)
is-positive-fraction-ℤ x
exists
(λ n le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x))
archimedean-property-fraction-ℤ
x@(px , qx , pos-qx) y@(py , qy , pos-qy) pos-px =
elim-exists
(∃
( ℕ)
( λ n
le-fraction-ℤ-Prop y (in-fraction-ℤ (int-ℕ n) *fraction-ℤ x)))
( λ n H
intro-exists
( n)
( tr
( le-ℤ (py *ℤ qx))
( inv (associative-mul-ℤ (int-ℕ n) px qy))
( H)))
( archimedean-property-ℤ
( px *ℤ qy)
( py *ℤ qx)
( is-positive-mul-ℤ pos-px pos-qy))
```

0 comments on commit fb4dd23

Please sign in to comment.