Skip to content

Commit

Permalink
For p : ℚ⁺, there is r : ℚ⁺ with r + r < p (#1269)
Browse files Browse the repository at this point in the history
  • Loading branch information
lowasser authored Feb 5, 2025
1 parent f7d9a5c commit ffc0501
Showing 1 changed file with 33 additions and 0 deletions.
33 changes: 33 additions & 0 deletions src/elementary-number-theory/positive-rational-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,12 @@ open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equivalences
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.negation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
Expand Down Expand Up @@ -611,6 +613,37 @@ module _
le-right-min-ℚ⁺ = pr2 (pr2 strict-min-law-ℚ⁺)
```

### Any positive rational number `p` has a `q` with `q + q < p`

```agda
abstract
double-le-ℚ⁺ :
(p : ℚ⁺)
exists ℚ⁺ (λ q le-prop-ℚ⁺ (q +ℚ⁺ q) p)
double-le-ℚ⁺ p = unit-trunc-Prop dependent-pair-result
where
q : ℚ⁺
q = left-summand-split-ℚ⁺ p
r : ℚ⁺
r = right-summand-split-ℚ⁺ p
s : ℚ⁺
s = strict-min-ℚ⁺ q r
-- Inlining this blows up compile times for some unclear reason.
dependent-pair-result : Σ ℚ⁺ (λ x le-ℚ⁺ (x +ℚ⁺ x) p)
dependent-pair-result =
s ,
tr
( le-ℚ⁺ (s +ℚ⁺ s))
( eq-add-split-ℚ⁺ p)
( preserves-le-add-ℚ
{ rational-ℚ⁺ s}
{ rational-ℚ⁺ q}
{ rational-ℚ⁺ s}
{ rational-ℚ⁺ r}
( le-left-min-ℚ⁺ q r)
( le-right-min-ℚ⁺ q r))
```

### Addition with a positive rational number is an increasing map

```agda
Expand Down

0 comments on commit ffc0501

Please sign in to comment.