Skip to content

Code for Towards Less Constrained Macro-Neural Architecture Search

License

Notifications You must be signed in to change notification settings

VascoLopes/LCMNAS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

f5a5707 · Mar 10, 2022

History

5 Commits
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022
Mar 10, 2022

Repository files navigation

LCMNAS

Instalation:

sudo apt-get install python3-dev graphviz libgraphviz-dev pkg-config python3 -m venv venv source venv/bin/activate pip install wheel torchcontrib pytorchcv pip install -r requirements.txt

Get Data sets (informations are anonymized)

Download data.zip and extract it in the main directory of the code from https://drive.google.com/drive/folders/1bnXQfYfNyYKCSX05DSFG8gE---EkfXSP?usp=sharing

Get Best Architectures Found (informations are anonymized)

Download models.zip (these do not have the autoaugment training) from https://drive.google.com/drive/folders/1bnXQfYfNyYKCSX05DSFG8gE---EkfXSP?usp=sharing

Experiments (the results get automatically stored in the experiments folder)

Mixed-performance estimation mechanism: (lambda=0.75)

python3 count.py --generations 50 --population 100 --dataset cifar10 --batch_size 96 —-mixed_training --mixed_fitness_lambda 0.75

Using only zero-proxy estimation (lambda=1)

python3 count.py --generations 50 --population 100 --dataset cifar10 --batch_size 96 --without_training --mixed_fitness_lambda 1

Using only regular training (lambda=0)

python3 count.py --generations 50 --population 100 --dataset cifar10 --batch_size 96 --mixed_fitness_lambda 0

Available datasets: cifar10 cifar100 ImageNet16-120

python3 count.py --generations 50 --population 100 --dataset cifar10 --batch_size 96 —-mixed_training --mixed_fitness_lambda 0.75

python3 count.py --generations 50 --population 100 --dataset cifar100 --batch_size 96 —-mixed_training --mixed_fitness_lambda 0.75

python3 count.py --generations 50 --population 100 --dataset ImageNet16 --batch_size 96 —-mixed_training --mixed_fitness_lambda 0.75

Train with auto-augment

python aux.py --searched_dataset cifar10 --dataset cifar10 --auto_augment --epochs 1500 --reset_weight --model_path "path_to_model"

Transfer to other data set

python aux.py --searched_dataset cifar10 --dataset ImageNet16 --reset_weight --model_path "path_to_model"

Thank you for the time spent reviewing our paper.

About

Code for Towards Less Constrained Macro-Neural Architecture Search

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages