1 Filter the vad
- by running vad_processing/vad_processing.ipynb
- fitered vad files should be put in the path preprocess/audio/filter_vad/
2 Using the filtered vad files to generate the samples, ground truth label and write them into csv files
- by running preprocess/audio/generate_samples.py
#main(x, y, z, vad_dict)
- x : experiment num (0 indicates generating training samples)
- y : window size
- z : ratio of positive samples to negative samples
- make sure generate training samples first.
3 Making pkl files for corresponding experiments' samples
- by running data_loading/make_examples.py
- generate training samples
- make_all_examples(0, windowSize)
- generate samples for experiment 1
- make_all_examples(1, windowSize, numberOfExperiment)
- generate samples for experiment 2
- make_all_examples(2, windowSize, numberOfExperiment)
- generate samples for experiment 3
- make_all_examples(3, windowSize, numberOfExperiment, 'all_unsuccessful')
- generate samples for experiment 4
- make_all_examples(4, windowSize, numberOfExperiment, 'start')
- generate samples for experiment 5
- make_all_examples(5, windowSize, numberOfExperiment, 'continue')
### make sure the windowSize is consistant with the samples generated by generate_samples.py
4 Execute the training
- running baseline/testTrain.py
- train the model (make sure you also have one successful test sample pkl with same windowSize )
- main(True, 0, windowSize, numberOfExperiment)
- model is saved in 108th line
- torch.save(model.state_dict(), "savedName.pt")
## Choose the correct model for following experiments' test(correct windowSize)
## modeled is chosen in 122th line
- model.load_state_dict(torch.load("chosenModel.pt"))
For experiment 1 - 5
- main(False, x, y, z)
- x : experiment number
- y : windowSize
- z : how mnay experiment run