Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for image absolute path by using the "parent" directory in the data.yaml #2071

Open
wants to merge 52 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
52 commits
Select commit Hold shift + click to select a range
5bb345f
fix annotation txtx file creation
Aug 7, 2024
b82fdc0
Add support using the "parent" directory in data.yaml as parent for t…
Aug 8, 2024
c1a580e
comment
Aug 15, 2024
c8c3363
Fixed randomizer gets integers only!
Aug 15, 2024
18086f7
comment
Aug 19, 2024
02f785d
check train dataset objects class id violation. n-ch in as param,
Aug 27, 2024
c3276b3
Test/ train/detect :Scaling and normalization.
Sep 15, 2024
e5654f4
tir channel expansion, adapt mosaic to TIR or any other than UINT8/RG…
Sep 23, 2024
abdcce0
Test : medium size try/excepton
Oct 14, 2024
e7c36ba
modify TIR channel expansion to be w/o augmentation
Oct 14, 2024
292ca3b
train/val/test data split
Oct 14, 2024
14fd22e
train/val/test data split
Oct 14, 2024
65d0872
CLearML connect config
Oct 15, 2024
890f748
CLearML connect config
Oct 15, 2024
3da5c91
CLearML connect config
Oct 15, 2024
db5033a
Milesone MaP_person = 82.5%
Oct 20, 2024
d166717
CLearML connect config
Oct 20, 2024
60ef66c
train.py save runs to incremental anywhere : /mnt/Data/<user>
Oct 20, 2024
102d731
claer ml debug
Oct 20, 2024
5f8046d
claer ml debug
Oct 20, 2024
f366ed0
stability of denum in data norm/standard
Oct 21, 2024
e2f0c15
remove torch anomaly()
Oct 22, 2024
5639572
plot PR curve thresholds and R@P
Oct 27, 2024
e16bd3f
random seed, hyp for random perspective
Oct 30, 2024
c040cf8
enable random perspective
Oct 31, 2024
15755c3
dataset.py: align test() loader to train
Nov 4, 2024
b2bc377
hyp : scaling and mosaic w/ scliang before mosaic
Nov 4, 2024
5e5dfde
Fix rnd perspective fillng the padded pixels by TIR mean value to red…
Nov 6, 2024
ddeff5a
increased training/val set 24500/5346
Nov 10, 2024
7391d5f
Clean bad recordings from France
Nov 11, 2024
4afc52b
Filter validation set from RF leakage USA. Add tag per PR curve
Nov 13, 2024
2de1a25
Random padding, Val/train new split append to previous list
Nov 17, 2024
6c577e9
New Train val set split Swiss-snow-2018 to training(test19g_sy_rd_ch…
Nov 19, 2024
c6e82c4
Random padding- post processing w/ all augmentations permutations.sta…
Nov 25, 2024
13a313c
Gamma augmentation robustness to Random padding, clip 0<image<1, new …
Nov 26, 2024
6ab8732
hyp effective in ClearML, center_roi train/val/test list
Nov 26, 2024
705aa5e
Fix random padding disabled on mosaic that ovverides ROI
Nov 26, 2024
542cc99
PNG/MP$ dataset __getitem__() adaptation. Fix paste_in loading many p…
Dec 1, 2024
6421910
center_roi
Dec 3, 2024
abe5250
comments
Dec 5, 2024
5d99ec8
Onnx model OnnxRT for eval old TIR model, validate annotations over PNG
Dec 11, 2024
9aec3af
adapt to TIR env export.py. Fix threshold computation for Precision r…
Dec 16, 2024
ee65c33
Fix mAP over Onnx wrapper for old TIR model
Dec 16, 2024
54a0cc2
NMS-ORT built in Onnx model P/R curve fits theory.
Dec 23, 2024
76e6315
Onnx model P/R curve, fixed, 1st IOU criterion per image than mAP ove…
Dec 24, 2024
221429a
datasets.py: 768x1024, random padding, roi based scaling . still open…
Jan 6, 2025
772cee9
datasets.py: 768x1024, random padding, roi based scaling . still open…
Jan 6, 2025
b8a2a10
Union train list mp4/tiff/seq
Jan 7, 2025
ab1f39e
Overfit 640 settings commit before checkout old
Jan 8, 2025
973e434
Onnx for Prediction w/o GT
Jan 13, 2025
0f8f077
Onnx for Prediction w/o GT
Jan 13, 2025
085ee89
mAP breakdown sensor/time in day/ mAP per range : Dataset : add csv w…
Jan 27, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
699 changes: 699 additions & 0 deletions YOLOv7onnx.py

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions cfg/training/yolov7-tiny.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
nc: 2 # number of classes
depth_multiple: 1.0 # model depth multiple @@ HK TODO:
width_multiple: 1.0 # layer channel multiple

# anchors
Expand Down
21 changes: 21 additions & 0 deletions data/coco_2_tir.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# COCO 2017 dataset http://cocodataset.org

# download command/URL (optional)
path: /home/hanoch/projects/tir_frames_rois/yolo7_tir_coco_classes_data_all #/home/hanoch/projects/tir_frames_rois/yolo7_tir_data_all #/home/hanochk/tir_frames_rois/yolo7_tir_data
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ./yolov7/tir_od/training_set.txt #./yolov7/tir_od/val_set_1_file.txt #./yolov7/tir_od/training_set.txt #./yolov7/tir_od/training_set.txt # 118287 images
val: ./yolov7/tir_od/validation_set.txt # ./yolov7/tir_od/validation_set.txt #./yolov7/tir_od/val_tir_od.txt #./yolov7/tir_od/validation_set.txt # 5000 images

# number of classes
nc: 80

# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
12 changes: 6 additions & 6 deletions data/hyp.scratch.tiny.yaml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lr0: 0.0005 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
Expand All @@ -14,12 +14,12 @@ iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
translate: 0.0 # image translation (+/- fraction)
scale: 0.0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
loss_ota: 1 #1 # use ComputeLossOTA, use 0 for faster training
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.60 # like the default in the code was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0.2 #0.2 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.1 # 0.1 # image copy paste (probability), use 0 for faster training : cutout
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 1
scaling_before_mosaic : 1
gamma : 80 # percent 90 percente more stability to gamma
random_pad: true
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 0.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.60 # like the default in the code was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0.2 #0.2 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.1 # 0.1 # image copy paste (probability), use 0 for faster training : cutout
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 1
scaling_before_mosaic : 1
gamma : 80 # percent 90 percente more stability to gamma
random_pad: true
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.0 # image translation (+/- fraction)
scale: 0.0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
drc_per_ch_percentile: 0.3 #[0, 0.2, 0.5]
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
37 changes: 37 additions & 0 deletions data/hyp.tir_od.tiny_aug.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
gamma_liklihood: 0.0
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny_aug_gamma.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.60 # like the default in the code was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny_aug_gamma_anchor_3.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.60 # like the default in the code was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 3 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny_aug_gamma_lr_0p005.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.005 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.60 # like the default in the code was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny_aug_gamma_nms_iou_0p2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
36 changes: 36 additions & 0 deletions data/hyp.tir_od.tiny_aug_gamma_nms_iou_0p4.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
lr0: 0.001 #0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.005 # optimizer weight decay 5e-4 It resolve mAP of overfitting test
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.001 #0.001 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.40 # was 0.2 IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 2 # anchors per output layer (0 to ignore) @@HK was 3
fl_gamma: 1.5 #1.5 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
degrees: 0 # image rotation (+/- deg)
translate: 0 # image translation (+/- fraction)
scale: 0 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.3 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 0.5 # image mosaic (probability)
mixup: 0.15 # image mixup (probability)
copy_paste: 0.0 # image copy paste (probability)
paste_in: 0.0 # image copy paste (probability), use 0 for faster training : cutout
loss_ota: 0 #1 # use ComputeLossOTA, use 0 for faster training
inversion: 0.5 #opposite temperature
img_percentile_removal: 0.3
beta : 0.3
random_perspective : 0
gamma : 80 # percent
Loading