-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #147 from X-LANCE/cwx_slam_aac
SLAM-AAC open-source
- Loading branch information
Showing
18 changed files
with
1,479 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# SLAM-AAC | ||
|
||
SLAM-AAC is a LLM-based model for Automated Audio Captioning (AAC) task. Inspired by techniques in machine translation and ASR, the model enhances audio captioning by incorporating paraphrasing augmentation and a plug-and-play CLAP-Refine strategy. | ||
<!-- For more details, please refer to the [paper](). --> | ||
|
||
## Model Architecture | ||
SLAM-AAC uses EAT as the audio encoder and Vicuna-7B as the LLM decoder. During training, only the Linear Projector and LoRA modules are trainable. For inference, multiple candidates are generated using different beam sizes, which are then refined using the CLAP-Refine strategy. | ||
|
||
![](./docs/model.png) | ||
|
||
## Performance and checkpoints | ||
We have released the pre-trained checkpoint of SLAM-AAC, as well as the fine-tuned checkpoints for the Clotho and AudioCaps datasets. The provided checkpoints include the model's Linear Projector and LoRA modules. Please note that when using each component, be sure to set up the corresponding environments according to the instructions provided in the respective repositories (e.g., for [EAT](https://github.com/cwx-worst-one/EAT)). | ||
|
||
### Pre-training | ||
SLAM-AAC was pre-trained on a combination of AudioCaps, Clotho, WavCaps, and MACS datasets. For more information on these datasets, you can refer to [this repository](https://github.com/Labbeti/aac-datasets). Additionally, the Clotho dataset was augmented using a back-translation-based paraphrasing technique. | ||
Audio Encoder | LLM | Checkpoint | Pre-training Dataset| | ||
|:---:|:---:|:---:|:---:| | ||
[EAT-base (fine-tuned)](https://drive.google.com/file/d/1aCYiQmoZv_Gh1FxnR-CCWpNAp6DIJzn6/view?usp=sharing) |[vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [link](https://drive.google.com/drive/folders/10kOjB112AeGYA_0mIUr8f1-i5rSg08_O?usp=sharing) | AudioCaps, Clotho, WavCaps, MACS | | ||
|
||
### Fine-tuning | ||
We fine-tuned the pre-trained model on the Clotho and AudioCaps datasets, respectively. The final evaluation was conducted using audio captions generated with the CLAP-Refine decoding strategy. | ||
Dataset | Audio Encoder | LLM | Checkpoint | METEOR | CIDEr | SPICE | SPIDEr | SPIDEr-FL | FENSE | ||
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | ||
| Clotho | [EAT-base (fine-tuned)](https://drive.google.com/file/d/1aCYiQmoZv_Gh1FxnR-CCWpNAp6DIJzn6/view?usp=sharing) | [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [link](https://drive.google.com/drive/folders/1QX7CM9YAddPi02_NRChI5mzsNmBBtA63?usp=sharing) | 19.7 | 51.5 | 14.8 |33.2 | 33.0 | 54.0 | | ||
| AudioCaps | [EAT-base (fine-tuned)](https://drive.google.com/file/d/1aCYiQmoZv_Gh1FxnR-CCWpNAp6DIJzn6/view?usp=sharing) | [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [link](https://drive.google.com/drive/folders/1GhFPiSVmBE9BvBhYWCEqkFuH-avKl-4g?usp=sharing) | 26.8 | 84.1 | 19.4 | 51.8 | 51.5 | 66.8 | | ||
|
||
|
||
## Data preparation | ||
Ensure your `jsonl` data follows the structure outlined below: | ||
```json | ||
{"key": "Y7fmOlUlwoNg_1", "source": "/root/data/AudioCaps/waveforms/test/Y7fmOlUlwoNg.wav", "target": "Constant rattling noise and sharp vibrations"} | ||
{"key": "Y6BJ455B1aAs_1", "source": "/root/data/AudioCaps/waveforms/test/Y6BJ455B1aAs.wav", "target": "A rocket flies by followed by a loud explosion and fire crackling as a truck engine runs idle"} | ||
``` | ||
In addition, you can refer to the [manifest](https://drive.google.com/drive/folders/1NJinoWg3yXKSPm-pRrhqKLvCD9dtDuDG?usp=sharing) file we've provided, which includes the Clotho dataset enhanced with **paraphrasing augmentation** as bonus. | ||
|
||
## Model Training | ||
To pre-train the SLAM-AAC model with pre-training data, you can run the following command: | ||
```bash | ||
# Pre-train the model | ||
bash scripts/pretrain.sh | ||
``` | ||
|
||
You can fine-tune the model on the AudioCaps or Clotho datasets using the [provided checkpoint](https://drive.google.com/drive/folders/10kOjB112AeGYA_0mIUr8f1-i5rSg08_O?usp=sharing) or your own pre-trained model by running the following commands: | ||
|
||
```bash | ||
# Fine-tune on AudioCaps | ||
bash scripts/finetune_audiocaps.sh | ||
|
||
# Fine-tune on Clotho | ||
bash scripts/finetune_clotho.sh | ||
``` | ||
|
||
You can also fine-tune the model without loading any pre-trained weights, though this may result in reduced performance. | ||
|
||
|
||
### Note | ||
- In the current version of SLAM-LLM, the `peft_ckpt` parameter is no longer required. However, if you are using the checkpoint provided by us, which was trained with an earlier version, please keep the `peft_ckpt` parameter in your configuration to ensure compatibility. | ||
- Due to differences in dependency versions, there may be slight variations in the performance of the SLAM-AAC model. | ||
|
||
## Inference | ||
To perform inference with the trained models, you can use the following commands to decode using the common beam search method: | ||
```bash | ||
# Inference on AudioCaps (Beam Search) | ||
bash scripts/inference_audiocaps_bs.sh | ||
|
||
# Inference on Clotho (Beam Search) | ||
bash scripts/inference_clotho_bs.sh | ||
``` | ||
|
||
For improved inference results, you can use the CLAP-Refine strategy, which utilizes multiple beam search decoding. To use this method, you need to download and use our pre-trained [CLAP](https://drive.google.com/drive/folders/1X4NYE08N-kbOy6s_Itb0wBR_3X8oZF56?usp=sharing) model. Note that CLAP-Refine may take longer to run, but it can provide better quality outputs. You can execute the following commands: | ||
```bash | ||
# Inference on AudioCaps (CLAP-Refine) | ||
bash scripts/inference_audiocaps_CLAP_Refine.sh | ||
|
||
# Inference on Clotho (CLAP-Refine) | ||
bash scripts/inference_clotho_CLAP_Refine.sh | ||
``` | ||
|
||
If you already have the generated candidates and want to directly refine them using the CLAP-Refine strategy, you can run the following command: | ||
```bash | ||
bash scripts/clap_refine.sh | ||
``` | ||
|
||
<!-- ## Citation | ||
You can refer to the paper for more results. | ||
``` | ||
``` --> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
from dataclasses import dataclass, field | ||
from typing import Optional, List | ||
@dataclass | ||
class ModelConfig: | ||
file: str = "examples/slam_aac/model/slam_model_aac.py:model_factory" | ||
llm_name: str = "vicuna-13b-v1.5" | ||
llm_path: str = "PATH/to/LLAMA/7B" | ||
llm_type: str = "decoder_only" | ||
llm_dim: int = 4096 | ||
encoder_name: Optional[str] = None | ||
encoder_ds_rate: int = 2 | ||
encoder_path: Optional[str] = None | ||
encoder_dim: int = 1280 | ||
encoder_projector: str = "linear" | ||
encoder_projector_ds_rate: int = 5 | ||
encoder_fairseq_dir: str = "/fairseq/EAT" | ||
modal: str = "audio" | ||
normalize: Optional[bool] = field(default=False, metadata={ | ||
"help": "whether inpit is normalized, used for models such as wavlm" | ||
}) | ||
do_sample: bool = False | ||
top_p: float = 1.0 | ||
temperature: float = 1.0 | ||
num_beams: int = 4 | ||
num_return_sequences: int = 1 | ||
length_penalty: float = 1.0 | ||
repetition_penalty: float = 1.0 | ||
max_new_tokens: int = 200 | ||
min_length: int = 1 | ||
|
||
@dataclass | ||
class PeftConfig: | ||
peft_method: str = "lora" # None , llama_adapter, prefix | ||
r: int = 8 | ||
lora_alpha: int = 32 | ||
target_modules: List = field(default_factory=lambda: [ "q_proj", "v_proj" ]) | ||
bias: str = "none" | ||
task_type: str = "CAUSAL_LM" | ||
lora_dropout: float = 0.05 | ||
inference_mode: bool = False | ||
|
||
@dataclass | ||
class TrainConfig: | ||
model_name:str = "PATH/to/LLAMA/7B" | ||
enable_ddp:bool = False | ||
enable_deepspeed:bool = False | ||
enable_fsdp:bool = False | ||
low_cpu_fsdp:bool = False | ||
run_validation:bool = True | ||
batch_size_training:int = 4 | ||
batching_strategy:str = field(default="packing", metadata={ | ||
"help":"alternative: padding" | ||
}) # | ||
context_length:int = 4096 | ||
gradient_accumulation_steps:int = 1 | ||
num_epochs:int = 3 | ||
num_workers_dataloader:int = 1 | ||
warmup_steps:int = 1000 | ||
total_steps:int = 100000 | ||
validation_interval:int = 1000 | ||
lr:float = 1e-4 | ||
weight_decay:float = 0.0 | ||
gamma:float = 0.85 | ||
seed:int = 42 | ||
use_fp16:bool = False | ||
mixed_precision:bool = True | ||
val_batch_size:int = 1 | ||
|
||
use_peft:bool = False | ||
peft_config:PeftConfig = field(default_factory=PeftConfig) | ||
output_dir:str = "PATH/to/save/PEFT/model" | ||
freeze_layers:bool = False | ||
num_freeze_layers:int = 1 | ||
quantization:bool = False | ||
one_gpu:bool = False | ||
save_model:bool = True | ||
dist_checkpoint_root_folder:str = "PATH/to/save/FSDP/model" # will be used if using FSDP | ||
dist_checkpoint_folder:str = "fine-tuned" # will be used if using FSDP | ||
save_optimizer:bool = False # will be used if using FSDP | ||
use_fast_kernels:bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels | ||
run_test_during_validation:bool = False | ||
run_test_during_validation_file:str = "test.wav" | ||
run_test_during_validation_prompt:str = "<|ASR|>" | ||
freeze_llm:bool = field(default=False, metadata={ | ||
"help": "whether to freeze llm when finetuning, should be true when use peft finetuning" | ||
}) | ||
freeze_encoder:bool = False | ||
specaug:bool = False | ||
noise_aug:bool = False | ||
|
||
@dataclass | ||
class DataConfig: | ||
dataset: str = "audio_dataset" | ||
file: str = "src/slam_llm/datasets/audio_dataset.py:get_audio_dataset" | ||
train_data_path: Optional[str] = None | ||
val_data_path: Optional[str] = None | ||
train_split: str = "train" | ||
test_split:str = "validation" | ||
prompt: Optional[str] = None | ||
data_path: Optional[str] = None | ||
max_words: Optional[int] = None | ||
max_mel: Optional[float] = None | ||
fix_length_audio: int = -1 | ||
inference_mode:bool = False | ||
model_name: str = 'eat' | ||
fbank_mean: float = -4.268 | ||
fbank_std: float = 4.569 | ||
target_length: int = 1024 | ||
fixed_length: bool = False | ||
prompt: str = "Describe the audio you hear." | ||
random_crop: bool = False | ||
encoder_projector_ds_rate: int = 5 | ||
input_type: str = field(default="raw", metadata={ | ||
"help":"Use raw when input is wav, mel when for whisper" | ||
}) | ||
mel_size: int = field(default=80, metadata={ | ||
"help": "80 for whisper large v1 and v2, 128 for v3" | ||
}) | ||
normalize: Optional[bool] = field(default=False, metadata={ | ||
"help": "whether inpit is normalized, used for models such as wavlm" | ||
}) | ||
|
||
@dataclass | ||
class FSDPConfig: | ||
mixed_precision: bool = True | ||
use_fp16: bool = False | ||
# sharding_strategy = "FULL_SHARD" #ShardingStrategy = ShardingStrategy.FULL_SHARD | ||
sharding_strategy: str = "NO_SHARD" #ShardingStrategy.NO_SHARD #MZY: set NO_SHARD when use DDP | ||
checkpoint_type: str = "SHARDED_STATE_DICT" # alternatively can use SHARDED_STATE_DICT save one file per rank, and can resize the world-size. | ||
fsdp_activation_checkpointing: bool = True | ||
fsdp_cpu_offload: bool = False | ||
pure_bf16: bool = False | ||
optimizer: str = "AdamW" | ||
|
||
@dataclass | ||
class LogConfig: | ||
use_wandb: bool = False | ||
wandb_dir: str = "/root/test_wandb" | ||
wandb_entity_name: str = "project_name" | ||
wandb_project_name: str = "project_name" | ||
wandb_exp_name: str = "exp_name" | ||
log_file: str = "/root/test.log" | ||
log_interval: int = 5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
{ | ||
"train_micro_batch_size_per_gpu": 4, | ||
"gradient_accumulation_steps": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-4 | ||
} | ||
}, | ||
"fp16": { | ||
"enabled": true | ||
}, | ||
"zero_optimization": { | ||
"stage": 3, | ||
"offload_optimizer": { | ||
"device": "cpu" | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
dataset_config: | ||
# we put prompt here, because the hydra override in shell script only support a small subset of chars | ||
prompt: "Describe the audio you hear." |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
from slam_llm.pipeline.finetune import main as train | ||
|
||
import hydra | ||
import logging | ||
from typing import Optional | ||
from dataclasses import dataclass, field | ||
from omegaconf import DictConfig, ListConfig, OmegaConf | ||
from aac_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig | ||
|
||
@dataclass | ||
class RunConfig: | ||
dataset_config: DataConfig = field(default_factory=DataConfig) | ||
model_config: ModelConfig = field(default_factory=ModelConfig) | ||
train_config: TrainConfig = field(default_factory=TrainConfig) | ||
log_config: LogConfig = field(default_factory=LogConfig) | ||
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig) | ||
debug: bool = field(default=False, metadata={"help": "Use pdb when true"}) | ||
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"}) | ||
ckpt_path: Optional[str] = field( | ||
default=None, metadata={"help": "The path to projector checkpoint"} | ||
) | ||
peft_ckpt: Optional[str] = field( | ||
default=None, metadata={"help": "The path to peft checkpoint"} | ||
) | ||
|
||
@hydra.main(config_name=None, version_base=None) | ||
def main_hydra(cfg: DictConfig): | ||
run_config = RunConfig() | ||
cfg = OmegaConf.merge(run_config, cfg) | ||
def to_plain_list(cfg_item): | ||
if isinstance(cfg_item, ListConfig): | ||
return OmegaConf.to_container(cfg_item, resolve=True) | ||
elif isinstance(cfg_item, DictConfig): | ||
return {k: to_plain_list(v) for k, v in cfg_item.items()} | ||
else: | ||
return cfg_item | ||
|
||
# kwargs = to_plain_list(cfg) | ||
kwargs = cfg | ||
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) | ||
|
||
logging.basicConfig(level=log_level) | ||
|
||
if kwargs.get("debug", False): | ||
import pdb; | ||
pdb.set_trace() | ||
|
||
train(kwargs) | ||
|
||
|
||
if __name__ == "__main__": | ||
main_hydra() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from slam_llm.pipeline.inference_batch import main as inference | ||
|
||
import hydra | ||
import logging | ||
from dataclasses import dataclass, field | ||
from omegaconf import DictConfig, ListConfig, OmegaConf | ||
from typing import Optional | ||
from aac_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig | ||
|
||
|
||
@dataclass | ||
class RunConfig: | ||
dataset_config: DataConfig = field(default_factory=DataConfig) | ||
model_config: ModelConfig = field(default_factory=ModelConfig) | ||
train_config: TrainConfig = field(default_factory=TrainConfig) | ||
log_config: LogConfig = field(default_factory=LogConfig) | ||
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig) | ||
debug: bool = field(default=False, metadata={"help": "Use pdb when true"}) | ||
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"}) | ||
decode_log: str = field( | ||
default="output/decode_log", | ||
metadata={"help": "The prefix for the decode output"}, | ||
) | ||
ckpt_path: str = field( | ||
default="output/model.pt", metadata={"help": "The path to projector checkpoint"} | ||
) | ||
peft_ckpt: Optional[str] = field( | ||
default=None, | ||
metadata={ | ||
"help": "The path to peft checkpoint, should be a directory including adapter_config.json" | ||
}, | ||
) | ||
|
||
|
||
@hydra.main(config_name=None, version_base=None) | ||
def main_hydra(cfg: DictConfig): | ||
run_config = RunConfig() | ||
cfg = OmegaConf.merge(run_config, cfg) | ||
# kwargs = to_plain_list(cfg) | ||
log_level = getattr(logging, cfg.get("log_level", "INFO").upper()) | ||
|
||
logging.basicConfig(level=log_level) | ||
|
||
if cfg.get("debug", False): | ||
import pdb | ||
|
||
pdb.set_trace() | ||
|
||
inference(cfg) | ||
|
||
|
||
if __name__ == "__main__": | ||
main_hydra() |
Oops, something went wrong.