-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #98 from ddlBoJack/main
sync
- Loading branch information
Showing
15 changed files
with
2,674 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
FROM pytorch/pytorch:2.1.0-cuda11.8-cudnn8-runtime | ||
|
||
USER root | ||
|
||
ARG DEBIAN_FRONTEND=noninteractive | ||
|
||
LABEL github_repo="https://github.com/ddlBoJack/SLAM-LLM" | ||
|
||
RUN set -x \ | ||
&& apt-get update \ | ||
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim ninja-build\ | ||
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \ | ||
&& rm -rf /var/lib/apt/lists/* \ | ||
&& apt-get clean | ||
|
||
RUN pip install --no-cache-dir packaging editdistance gpustat wandb einops debugpy tqdm soundfile matplotlib scipy sentencepiece pandas \ | ||
&& pip install --no-cache-dir torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118 | ||
|
||
WORKDIR /workspace | ||
|
||
RUN git clone https://github.com/huggingface/transformers.git \ | ||
&& cd transformers \ | ||
&& git checkout tags/v4.35.2 \ | ||
&& pip install --no-cache-dir -e . | ||
|
||
RUN git clone https://github.com/huggingface/peft.git \ | ||
&& cd peft \ | ||
&& git checkout tags/v0.6.0 \ | ||
&& pip install --no-cache-dir -e . | ||
|
||
RUN git clone https://github.com/pytorch/fairseq \ | ||
&& cd fairseq \ | ||
&& pip install --no-cache-dir --editable ./ | ||
|
||
RUN git clone https://github.com/ddlBoJack/SLAM-LLM.git \ | ||
&& cd SLAM-LLM \ | ||
&& pip install --no-cache-dir -e . | ||
|
||
ENV SHELL=/bin/bash | ||
|
||
WORKDIR /workspace/SLAM-LLM |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2024 Ziyang Ma | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# MIT License | ||
# | ||
# Copyright 2023 ByteDance Inc. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), | ||
# to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | ||
# IN THE SOFTWARE. | ||
|
||
import json | ||
import random | ||
import torch | ||
from torch import nn | ||
from einops import rearrange | ||
|
||
from ..modules.random_quantizer import RandomProjectionQuantizer | ||
from ..modules.features import MelSTFT | ||
from ..modules.conv import Conv2dSubsampling | ||
|
||
|
||
class MusicFM25Hz(nn.Module): | ||
""" | ||
MusicFM | ||
Input: 128-band mel spectrogram | ||
Frontend: 2-layer Residual convolution | ||
Backend: 12-layer Conformer | ||
Quantizer: a codebook for mel spectrogram | ||
""" | ||
|
||
def __init__( | ||
self, | ||
num_codebooks=1, | ||
codebook_dim=16, | ||
codebook_size=4096, | ||
features=["melspec_2048"], | ||
hop_length=240, | ||
n_mels=128, | ||
conv_dim=512, | ||
encoder_dim=1024, | ||
encoder_depth=12, | ||
mask_hop=0.4, | ||
mask_prob=0.6, | ||
is_flash=False, | ||
stat_path="./data/fma_stats.json", | ||
model_path="./data/pretrained_fma.pt", | ||
w2v2_config_path="facebook/wav2vec2-conformer-rope-large-960h-ft", | ||
): | ||
super(MusicFM25Hz, self).__init__() | ||
|
||
# global variables | ||
self.hop_length = hop_length | ||
self.mask_hop = mask_hop | ||
self.mask_prob = mask_prob | ||
self.num_codebooks = num_codebooks | ||
self.codebook_size = codebook_size | ||
self.features = features | ||
|
||
# load feature mean / std stats | ||
with open(stat_path, "r") as f: | ||
self.stat = json.load(f) | ||
|
||
# feature extractor | ||
self.preprocessor_melspec_2048 = MelSTFT( | ||
n_fft=2048, hop_length=hop_length, is_db=True | ||
) | ||
|
||
# random quantizer | ||
seed = 142 | ||
for feature in self.features: | ||
for i in range(num_codebooks): | ||
setattr( | ||
self, | ||
f"quantizer_{feature}_{i}", | ||
RandomProjectionQuantizer( | ||
n_mels * 4, codebook_dim, codebook_size, seed=seed + i | ||
), | ||
) | ||
|
||
# two residual convolution layers + one projection layer | ||
self.conv = Conv2dSubsampling( | ||
1, conv_dim, encoder_dim, strides=[2, 2], n_bands=n_mels | ||
) | ||
|
||
# Conformer | ||
if is_flash: | ||
from modules.flash_conformer import ( | ||
Wav2Vec2ConformerEncoder, | ||
Wav2Vec2ConformerConfig, | ||
) | ||
else: | ||
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( | ||
Wav2Vec2ConformerEncoder, | ||
Wav2Vec2ConformerConfig, | ||
) | ||
config = Wav2Vec2ConformerConfig.from_pretrained( | ||
w2v2_config_path | ||
) | ||
config.num_hidden_layers = encoder_depth | ||
config.hidden_size = encoder_dim | ||
|
||
self.conformer = Wav2Vec2ConformerEncoder(config) | ||
|
||
# projection | ||
self.linear = nn.Linear(encoder_dim, codebook_size) | ||
|
||
# loss function | ||
self.loss = nn.CrossEntropyLoss() | ||
|
||
# cls token (used for sequence classification) | ||
random.seed(seed) | ||
self.cls_token = nn.Parameter(torch.randn(encoder_dim)) | ||
|
||
# load model | ||
if model_path: | ||
S = torch.load(model_path)["state_dict"] | ||
SS = {k[6:]: v for k, v in S.items()} | ||
self.load_state_dict(SS, strict=True) | ||
|
||
def masking(self, x): | ||
"""random masking of 400ms with given probability""" | ||
mx = x.clone() | ||
b, t = mx.shape | ||
len_masking_raw = int(24000 * self.mask_hop) | ||
len_masking_token = int(24000 / self.hop_length / 2 / 2 * self.mask_hop) | ||
|
||
# get random mask indices | ||
start_indices = torch.rand(b, t // len_masking_raw) < self.mask_prob | ||
time_domain_masked_indices = torch.nonzero( | ||
start_indices.repeat_interleave(len_masking_raw, dim=1) | ||
) | ||
token_domain_masked_indices = torch.nonzero( | ||
start_indices.repeat_interleave(len_masking_token, dim=1) | ||
) | ||
|
||
# mask with random values | ||
masking_noise = ( | ||
torch.randn(time_domain_masked_indices.shape[0], dtype=x.dtype) * 0.1 | ||
) # 0 mean 0.1 std | ||
mx[tuple(time_domain_masked_indices.t())] = masking_noise.to(x.device) | ||
|
||
return mx, token_domain_masked_indices | ||
|
||
@torch.no_grad() | ||
def preprocessing(self, x, features): | ||
"""extract classic audio features""" | ||
# check precision | ||
if x.dtype == torch.float16: | ||
precision = 16 | ||
else: | ||
precision = 32 | ||
|
||
out = {} | ||
for key in features: | ||
layer = getattr(self, "preprocessor_%s" % key) | ||
out[key] = layer.float()(x.float())[..., :-1] | ||
if precision == 16: | ||
out[key] = out[key].half() | ||
return out | ||
|
||
def encoder(self, x): | ||
"""2-layer conv + w2v-conformer""" | ||
x = self.conv(x) | ||
out = self.conformer(x, output_hidden_states=True) | ||
hidden_emb = out["hidden_states"] | ||
last_emb = out["last_hidden_state"] | ||
logits = self.linear(last_emb) | ||
logits = { | ||
key: logits[:, :, i * self.codebook_size : (i + 1) * self.codebook_size] | ||
for i, key in enumerate(self.features) | ||
} | ||
return logits, hidden_emb | ||
|
||
@torch.no_grad() | ||
def normalize(self, x): | ||
"""normalize the input audio to have zero mean unit variance""" | ||
for key in x.keys(): | ||
x[key] = (x[key] - self.stat["%s_mean" % key]) / self.stat["%s_std" % key] | ||
return x | ||
|
||
@torch.no_grad() | ||
def rearrange(self, x): | ||
"""rearrange the batch to flatten every 4 steps""" | ||
for key in x.keys(): | ||
if key == "chromagram": | ||
x[key] = rearrange(x[key], "b f t -> b t f") | ||
else: | ||
x[key] = rearrange(x[key], "b f (t s) -> b t (s f)", s=4) | ||
return x | ||
|
||
@torch.no_grad() | ||
def tokenize(self, x): | ||
out = {} | ||
for key in x.keys(): | ||
layer = getattr(self, "quantizer_%s" % key) | ||
out[key] = layer(x[key]) | ||
return out | ||
|
||
def get_targets(self, x): | ||
x = self.preprocessing(x, features=self.features) | ||
x = self.normalize(x) | ||
x = self.rearrange(x) | ||
target_tokens = self.tokenize(x) | ||
return target_tokens | ||
|
||
def get_predictions(self, x): | ||
# preprocessing | ||
x = self.preprocessing(x, features=["melspec_2048"]) | ||
x = self.normalize(x) | ||
|
||
# encoding | ||
logits, hidden_emb = self.encoder(x["melspec_2048"]) | ||
|
||
return logits, hidden_emb | ||
|
||
def get_latent(self, x, layer_ix=12): | ||
_, hidden_states = self.get_predictions(x) | ||
emb = hidden_states[layer_ix] | ||
return emb | ||
|
||
def get_loss(self, logits, target_tokens, masked_indices): | ||
losses = {} | ||
accuracies = {} | ||
for key in logits.keys(): | ||
masked_logits = logits[key][tuple(masked_indices.t())] | ||
masked_tokens = target_tokens[key][tuple(masked_indices.t())] | ||
losses[key] = self.loss(masked_logits, masked_tokens) | ||
accuracies[key] = ( | ||
torch.sum(masked_logits.argmax(-1) == masked_tokens) | ||
/ masked_tokens.numel() | ||
) | ||
return losses, accuracies | ||
|
||
def forward(self, x): | ||
# get target feature tokens | ||
target_tokens = self.get_targets(x) | ||
|
||
# masking | ||
x, masked_indices = self.masking(x) | ||
|
||
# forward | ||
logits, hidden_emb = self.get_predictions(x) | ||
|
||
# get loss | ||
losses, accuracies = self.get_loss(logits, target_tokens, masked_indices) | ||
|
||
return logits, hidden_emb, losses, accuracies |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
|
||
|
Oops, something went wrong.