-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #156 from xrysamuel/main
Add recipe "sec_emotioncaps"
- Loading branch information
Showing
12 changed files
with
608 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# Speech Emotion Caption | ||
|
||
## Model Architecture | ||
|
||
This recipe generates high-quality, human-like speech emotion descriptions. The model is based on the **q-former projector** and the **vicuna-7b-v1.5 LLM**. The model is trained on **an unpublished datasets** dataset, which is a large-scale dataset for speech emotion captioning. | ||
|
||
![](docs/model.png) | ||
|
||
## Performance and checkpoints | ||
|
||
We only train the q-former projector in this recipe. | ||
|
||
Encoder | Projector | LLM | Similarity Score | ||
---|---|---|--- | ||
[emotion2vec_base](https://huggingface.co/emotion2vec/emotion2vec_base) | [Q-Former](to_do)| [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | 71.10 | ||
|
||
> **Note**: The baseline model [SECap](https://github.com/thuhcsi/SECap) was tested in our environment and achieved a similarity score of 71.52. Our model's score is slightly lower. | ||
## Data preparation | ||
You need to prepare the data jsonl in this format. | ||
|
||
``` | ||
{"key": "key_name", "source": "path_to_wav_file", "target": "corresponding_caption"} | ||
... | ||
``` | ||
|
||
|
||
## Decode with checkpoints | ||
|
||
``` | ||
bash decode_emotion2vec_qformer_vicuna_7b.sh | ||
``` | ||
|
||
Modify the path including `speech_encoder_path`, `llm_path`, `output_dir`, `ckpt_path`, `val_data_path` and `decode_log` in the script when you run the shell script. | ||
|
||
## Train a new model | ||
|
||
If you do have sufficient relevant data, you can train the model yourself. | ||
|
||
``` | ||
bash finetune_emotion2vec_qformer_vicuna_7b.sh | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
{ | ||
"train_micro_batch_size_per_gpu": 4, | ||
"gradient_accumulation_steps": 1, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-4 | ||
} | ||
}, | ||
"fp16": { | ||
"enabled": true | ||
}, | ||
"zero_optimization": { | ||
"stage": 3, | ||
"offload_optimizer": { | ||
"device": "cpu" | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
dataset_config: | ||
# we put prompt here, because the hydra override in shell script only support a small subset of chars | ||
prompt: "请用中文用一句话描述上面给出的音频中说话人的情感。" |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
from slam_llm.pipeline.finetune import main as train | ||
|
||
import hydra | ||
import logging | ||
from typing import Optional | ||
from dataclasses import dataclass, field | ||
from omegaconf import DictConfig, ListConfig, OmegaConf | ||
from sec_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig | ||
|
||
@dataclass | ||
class RunConfig: | ||
dataset_config: DataConfig = field(default_factory=DataConfig) | ||
model_config: ModelConfig = field(default_factory=ModelConfig) | ||
train_config: TrainConfig = field(default_factory=TrainConfig) | ||
log_config: LogConfig = field(default_factory=LogConfig) | ||
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig) | ||
debug: bool = field(default=False, metadata={"help": "Use pdb when true"}) | ||
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"}) | ||
ckpt_path: Optional[str] = field( | ||
default=None, metadata={"help": "The path to projector checkpoint"} | ||
) | ||
|
||
@hydra.main(config_name=None, version_base=None) | ||
def main_hydra(cfg: DictConfig): | ||
run_config = RunConfig() | ||
cfg = OmegaConf.merge(run_config, cfg) | ||
def to_plain_list(cfg_item): | ||
if isinstance(cfg_item, ListConfig): | ||
return OmegaConf.to_container(cfg_item, resolve=True) | ||
elif isinstance(cfg_item, DictConfig): | ||
return {k: to_plain_list(v) for k, v in cfg_item.items()} | ||
else: | ||
return cfg_item | ||
|
||
# kwargs = to_plain_list(cfg) | ||
kwargs = cfg | ||
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) | ||
|
||
logging.basicConfig(level=log_level) | ||
|
||
if kwargs.get("debug", False): | ||
import pdb; | ||
pdb.set_trace() | ||
|
||
train(kwargs) | ||
|
||
|
||
if __name__ == "__main__": | ||
main_hydra() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from slam_llm.pipeline.inference_batch import main as inference | ||
|
||
import hydra | ||
import logging | ||
from dataclasses import dataclass, field | ||
from omegaconf import DictConfig, ListConfig, OmegaConf | ||
from typing import Optional | ||
from sec_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig | ||
|
||
|
||
@dataclass | ||
class RunConfig: | ||
dataset_config: DataConfig = field(default_factory=DataConfig) | ||
model_config: ModelConfig = field(default_factory=ModelConfig) | ||
train_config: TrainConfig = field(default_factory=TrainConfig) | ||
log_config: LogConfig = field(default_factory=LogConfig) | ||
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig) | ||
debug: bool = field(default=False, metadata={"help": "Use pdb when true"}) | ||
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"}) | ||
decode_log: str = field( | ||
default="output/decode_log", | ||
metadata={"help": "The prefix for the decode output"}, | ||
) | ||
ckpt_path: str = field( | ||
default="output/model.pt", metadata={"help": "The path to projector checkpoint"} | ||
) | ||
peft_ckpt: Optional[str] = field( | ||
default=None, | ||
metadata={ | ||
"help": "The path to peft checkpoint, should be a directory including adapter_config.json" | ||
}, | ||
) | ||
|
||
|
||
@hydra.main(config_name=None, version_base=None) | ||
def main_hydra(cfg: DictConfig): | ||
run_config = RunConfig() | ||
cfg = OmegaConf.merge(run_config, cfg) | ||
# kwargs = to_plain_list(cfg) | ||
log_level = getattr(logging, cfg.get("log_level", "INFO").upper()) | ||
|
||
logging.basicConfig(level=log_level) | ||
|
||
if cfg.get("debug", False): | ||
import pdb | ||
|
||
pdb.set_trace() | ||
|
||
inference(cfg) | ||
|
||
|
||
if __name__ == "__main__": | ||
main_hydra() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import torch | ||
import os | ||
import logging | ||
from slam_llm.models.slam_model import ( | ||
slam_model, | ||
setup_tokenizer, | ||
setup_encoder, | ||
setup_encoder_projector, | ||
setup_llm, | ||
) | ||
from slam_llm.utils.train_utils import print_model_size | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
def model_factory(train_config, model_config, **kwargs): | ||
# return necessary components for training | ||
tokenizer = setup_tokenizer(train_config, model_config, **kwargs) | ||
|
||
encoder = setup_encoder(train_config, model_config, **kwargs) | ||
|
||
# llm | ||
llm = setup_llm(train_config, model_config, **kwargs) | ||
|
||
# projector | ||
encoder_projector = setup_encoder_projector( | ||
train_config, model_config, **kwargs | ||
) | ||
model = slam_model_sec( | ||
encoder, | ||
llm, | ||
encoder_projector, | ||
tokenizer, | ||
train_config, | ||
model_config, | ||
**kwargs, | ||
) | ||
|
||
ckpt_path = kwargs.get( | ||
"ckpt_path", None | ||
) # FIX(MZY): load model ckpt(mainly projector, related to model_checkpointing/checkpoint_handler.py: save_model_checkpoint_peft) | ||
if ckpt_path is not None: | ||
logger.info("loading other parts from: {}".format(ckpt_path)) | ||
ckpt_dict = torch.load(ckpt_path, map_location="cpu") | ||
model.load_state_dict(ckpt_dict, strict=False) | ||
|
||
print_model_size( | ||
model, | ||
train_config, | ||
( | ||
int(os.environ["RANK"]) | ||
if train_config.enable_fsdp or train_config.enable_ddp | ||
else 0 | ||
), | ||
) | ||
return model, tokenizer | ||
|
||
|
||
class slam_model_sec(slam_model): | ||
def __init__( | ||
self, | ||
encoder, | ||
llm, | ||
encoder_projector, | ||
tokenizer, | ||
train_config, | ||
model_config, | ||
**kwargs, | ||
): | ||
super().__init__( | ||
encoder, | ||
llm, | ||
encoder_projector, | ||
tokenizer, | ||
train_config, | ||
model_config, | ||
**kwargs, | ||
) | ||
|
||
|
||
@torch.no_grad() | ||
def inference( | ||
self, | ||
wav_path=None, | ||
prompt=None, | ||
generation_config=None, | ||
logits_processor=None, | ||
stopping_criteria=None, | ||
prefix_allowed_tokens_fn=None, | ||
synced_gpus=None, | ||
assistant_model=None, | ||
streamer=None, | ||
negative_prompt_ids=None, | ||
negative_prompt_attention_mask=None, | ||
**kwargs, | ||
): | ||
# inference for asr model | ||
|
||
device = kwargs.get("device", "cuda") | ||
if os.path.exists(wav_path): # Audio-Text QA | ||
import whisper | ||
|
||
audio_raw = whisper.load_audio(wav_path) | ||
audio_raw = whisper.pad_or_trim(audio_raw) | ||
|
||
mel_size = getattr( | ||
self.dataset_config, "mel_size", 80 | ||
) # 80 for large v1 and v2, 128 for large v3 | ||
audio_mel = ( | ||
whisper.log_mel_spectrogram(audio_raw, n_mels=mel_size) | ||
.permute(1, 0)[None, :, :] | ||
.to(device) | ||
) | ||
|
||
encoder_outs = self.encoder.extract_variable_length_features( | ||
audio_mel.permute(0, 2, 1) | ||
) | ||
|
||
if self.model_config.encoder_projector == "q-former": | ||
audio_mel_post_mask = torch.ones( | ||
encoder_outs.size()[:-1], dtype=torch.long | ||
).to(encoder_outs.device) | ||
encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask) | ||
if self.model_config.encoder_projector == "linear": | ||
encoder_outs = self.encoder_projector(encoder_outs) | ||
else: # Text QA | ||
encoder_outs = torch.empty( | ||
1, 0, self.llm.model.embed_tokens.embedding_dim | ||
).to(device) | ||
|
||
prompt = "USER: {}\n ASSISTANT:".format(prompt) | ||
prompt_ids = self.tokenizer.encode(prompt) | ||
prompt_length = len(prompt_ids) | ||
prompt_ids = torch.tensor(prompt_ids, dtype=torch.int64).to(device) | ||
|
||
if hasattr(self.llm.model, "embed_tokens"): | ||
inputs_embeds = self.llm.model.embed_tokens(prompt_ids) | ||
elif hasattr(self.llm.model.model, "embed_tokens"): | ||
inputs_embeds = self.llm.model.model.embed_tokens(prompt_ids) | ||
else: | ||
inputs_embeds = self.llm.model.model.model.embed_tokens(prompt_ids) | ||
|
||
inputs_embeds = torch.cat( | ||
(encoder_outs, inputs_embeds[None, :, :]), dim=1 | ||
) # [audio,prompt] | ||
|
||
attention_mask = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long).to( | ||
inputs_embeds.device | ||
) | ||
|
||
# generate | ||
model_outputs = self.generate( | ||
inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs | ||
) | ||
|
||
return model_outputs |
63 changes: 63 additions & 0 deletions
63
examples/sec_emotioncaps/scripts/decode_emotion2vec_qformer_vicuna_7b.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
#!/bin/bash | ||
# export PYTHONPATH=/root/whisper:$PYTHONPATH | ||
# export PYTHONPATH=/root/fairseq:$PYTHONPATH | ||
export CUDA_VISIBLE_DEVICES=1 | ||
export TOKENIZERS_PARALLELISM=false | ||
# export CUDA_LAUNCH_BLOCKING=1 | ||
export OMP_NUM_THREADS=1 | ||
|
||
# debug setting for multiple gpus | ||
# export NCCL_DEBUG=INFO | ||
# export NCCL_DEBUG_SUBSYS=ALL | ||
# export TORCH_DISTRIBUTED_DEBUG=INFO | ||
|
||
run_dir=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/SLAM-LLM | ||
cd $run_dir | ||
code_dir=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/SLAM-LLM/examples/sec_emotioncaps | ||
|
||
speech_encoder_path=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/ckpt/emotion2vec_base.pt | ||
llm_path=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/ckpt/vicuna-7b-v1.5 | ||
val_data_path=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/data/valid.jsonl | ||
|
||
encoder_fairseq_dir=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/deps/emotion2vec/upstream | ||
|
||
output_dir=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/out/sec-decode-$(date +"%Y%m%d-%s") | ||
|
||
ckpt_path=/hpc_stor03/sjtu_home/ruiyang.xu/SLAM/out/sec-finetune-20241001-1727786623/sec_epoch_1_step_3000/model.pt | ||
|
||
decode_log=$output_dir/decode_log | ||
|
||
hydra_args=" | ||
hydra.run.dir=$output_dir \ | ||
++model_config.llm_name=vicuna-7b-v1.5 \ | ||
++model_config.llm_path=$llm_path \ | ||
++model_config.llm_dim=4096 \ | ||
++model_config.encoder_name=emotion2vec \ | ||
++model_config.encoder_projector_ds_rate=5 \ | ||
++model_config.encoder_path=$speech_encoder_path \ | ||
++model_config.encoder_fairseq_dir=$encoder_fairseq_dir \ | ||
++model_config.encoder_dim=768 \ | ||
++model_config.encoder_projector=q-former \ | ||
++dataset_config.dataset=speech_dataset \ | ||
++dataset_config.val_data_path=$val_data_path \ | ||
++dataset_config.data_path=$val_data_path \ | ||
++dataset_config.inference_mode=true \ | ||
++dataset_config.input_type=raw \ | ||
++train_config.model_name=sec \ | ||
++train_config.num_epochs=1 \ | ||
++train_config.freeze_encoder=true \ | ||
++train_config.freeze_llm=true \ | ||
++train_config.batching_strategy=custom \ | ||
++train_config.val_batch_size=4 \ | ||
++train_config.num_workers_dataloader=2 \ | ||
++train_config.output_dir=$output_dir \ | ||
++log_config.log_file=$output_dir/train.log \ | ||
++ckpt_path=$ckpt_path \ | ||
++decode_log=$decode_log | ||
" | ||
|
||
# -m debugpy --listen 5678 --wait-for-client | ||
python $code_dir/inference_sec_batch.py \ | ||
--config-path "conf" \ | ||
--config-name "prompt.yaml" \ | ||
$hydra_args |
Oops, something went wrong.