Pytorch Implementation for our MICCAI 2021 paper: LambdaUNet: 2.5D Stroke Lesion Segmentation of Diffusion-weighted MR Images.
- Tested OS: Linux
- Python >= 3.6
- Install PyTorch 1.4.0 with the correct CUDA version.
- Install the dependencies:
pip install -r requirements.txt
We will release the dataset soon.
You can train your own models with your customized configs and dataset. For example:
python lit_train.py --c samlpe -f 0
This repo borrows code from
If you find our work useful in your research, please cite our paper:
@article{ou2021lambdaunet,
title={LambdaUNet: 2.5 D Stroke Lesion Segmentation of Diffusion-weighted MR Images},
author={Ou, Yanglan and Yuan, Ye and Huang, Xiaolei and Wong, Kelvin and Volpi, John and Wang, James Z and Wong, Stephen TC},
journal={arXiv preprint arXiv:2104.13917},
year={2021}
}