This is the official implementation of the paper
DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging. Medical Image Analysis 2023.
by Zhenghan Fang, Kuo-Wei Lai, Peter van Zijl, Xu Li, and Jeremias Sulam.
Use the command below to install all required libraries.
conda env create --name [MY_ENV] -f environment.yml
Activate conda environment first
conda activate [MY_ENV]
python deepsti/main.py
arguments:
--mode train (train or predict)
--name name of your experiment
--data_dir path to dataset directory
--train_list list of training data
--validate_list list of validation data
--test_list list of testing data
--tesla field strength in training data [default: 3]
--batch_size batch size [default is 2]
--gpu GPU ID's, e.g. "0" or "0,1"
Example:
python deepsti/main.py --mode train --name myexp --data_dir data/ --train_list train.txt --validate_list validate.txt --test_list test.txt --gpu 0,1
tensorboard --logdir experiment/tb_log/deepsti_resunet_myexp
python deepsti/main.py
arguments:
--mode predict (train or predict)
--resume_file saved model parameters
--ext_data yml file of external data information
--gpu GPU ID's, e.g. "0" or "0,1"
Example:
python deepsti/main.py --mode predict --resume_file experiment/checkpoint/deepsti_resunet_Vmodel.pkl --gpu 1 --ext_data data/yml/example.yml
Predictions will be saved in experiment/results
.
Demo data will be provided shortly.
If you find the code useful for your research, please consider citing
@article{fang2023deepsti,
title={Deepsti: towards tensor reconstruction using fewer orientations in susceptibility tensor imaging},
author={Fang, Zhenghan and Lai, Kuo-Wei and van Zijl, Peter and Li, Xu and Sulam, Jeremias},
journal={Medical image analysis},
volume={87},
pages={102829},
year={2023},
publisher={Elsevier},
doi={https://doi.org/10.1016/j.media.2023.102829}
}