forked from AtsushiSakai/PythonRobotics
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Spiral Spanning Tree Coverage Path Planning (AtsushiSakai#355)
* First commit of Spiral Spanning Tree Coverage * Modify followed by first code review * fix pycodestyle error * modifies following 2nd code review
- Loading branch information
Showing
5 changed files
with
371 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
313 changes: 313 additions & 0 deletions
313
PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
""" | ||
Spiral Spanning Tree Coverage Path Planner | ||
author: Todd Tang | ||
paper: Spiral-STC: An On-Line Coverage Algorithm of Grid Environments | ||
by a Mobile Robot - Gabriely et.al. | ||
link: https://ieeexplore.ieee.org/abstract/document/1013479 | ||
""" | ||
|
||
import os | ||
import sys | ||
import math | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
do_animation = True | ||
|
||
|
||
class SpiralSpanningTreeCoveragePlanner: | ||
def __init__(self, occ_map): | ||
self.origin_map_height = occ_map.shape[0] | ||
self.origin_map_width = occ_map.shape[1] | ||
|
||
# original map resolution must be even | ||
if self.origin_map_height % 2 == 1 or self.origin_map_width % 2 == 1: | ||
sys.exit('original map width/height must be even \ | ||
in grayscale .png format') | ||
|
||
self.occ_map = occ_map | ||
self.merged_map_height = self.origin_map_height // 2 | ||
self.merged_map_width = self.origin_map_width // 2 | ||
|
||
self.edge = [] | ||
|
||
def plan(self, start): | ||
"""plan | ||
performing Spiral Spanning Tree Coverage path planning | ||
:param start: the start node of Spiral Spanning Tree Coverage | ||
""" | ||
|
||
visit_times = np.zeros( | ||
(self.merged_map_height, self.merged_map_width), dtype=np.int) | ||
visit_times[start[0]][start[1]] = 1 | ||
|
||
# generate route by | ||
# recusively call perform_spanning_tree_coverage() from start node | ||
route = [] | ||
self.perform_spanning_tree_coverage(start, visit_times, route) | ||
|
||
path = [] | ||
# generate path from route | ||
for idx in range(len(route)-1): | ||
dp = abs(route[idx][0] - route[idx+1][0]) + \ | ||
abs(route[idx][1] - route[idx+1][1]) | ||
if dp == 0: | ||
# special handle for round-trip path | ||
path.append(self.get_round_trip_path(route[idx-1], route[idx])) | ||
elif dp == 1: | ||
path.append(self.move(route[idx], route[idx+1])) | ||
elif dp == 2: | ||
# special handle for non-adjacent route nodes | ||
mid_node = self.get_intermediate_node(route[idx], route[idx+1]) | ||
path.append(self.move(route[idx], mid_node)) | ||
path.append(self.move(mid_node, route[idx+1])) | ||
else: | ||
sys.exit('adjacent path node distance larger than 2') | ||
|
||
return self.edge, route, path | ||
|
||
def perform_spanning_tree_coverage(self, current_node, visit_times, route): | ||
"""perform_spanning_tree_coverage | ||
recursive function for function <plan> | ||
:param current_node: current node | ||
""" | ||
|
||
def is_valid_node(i, j): | ||
is_i_valid_bounded = 0 <= i < self.merged_map_height | ||
is_j_valid_bounded = 0 <= j < self.merged_map_width | ||
if is_i_valid_bounded and is_j_valid_bounded: | ||
# free only when the 4 sub-cells are all free | ||
return bool( | ||
self.occ_map[2*i][2*j] | ||
and self.occ_map[2*i+1][2*j] | ||
and self.occ_map[2*i][2*j+1] | ||
and self.occ_map[2*i+1][2*j+1]) | ||
|
||
return False | ||
|
||
# counter-clockwise neighbor finding order | ||
order = [[1, 0], [0, 1], [-1, 0], [0, -1]] | ||
|
||
found = False | ||
route.append(current_node) | ||
for inc in order: | ||
ni, nj = current_node[0] + inc[0], current_node[1] + inc[1] | ||
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0: | ||
neighbor_node = (ni, nj) | ||
self.edge.append((current_node, neighbor_node)) | ||
found = True | ||
visit_times[ni][nj] += 1 | ||
self.perform_spanning_tree_coverage( | ||
neighbor_node, visit_times, route) | ||
|
||
# backtrace route from node with neighbors all visited | ||
# to first node with unvisited neighbor | ||
if not found: | ||
has_node_with_unvisited_ngb = False | ||
for node in reversed(route): | ||
# drop nodes that have been visited twice | ||
if visit_times[node[0]][node[1]] == 2: | ||
continue | ||
|
||
visit_times[node[0]][node[1]] += 1 | ||
route.append(node) | ||
|
||
for inc in order: | ||
ni, nj = node[0] + inc[0], node[1] + inc[1] | ||
if is_valid_node(ni, nj) and visit_times[ni][nj] == 0: | ||
has_node_with_unvisited_ngb = True | ||
break | ||
|
||
if has_node_with_unvisited_ngb: | ||
break | ||
|
||
return route | ||
|
||
def move(self, p, q): | ||
direction = self.get_vector_direction(p, q) | ||
# move east | ||
if direction == 'E': | ||
p = self.get_sub_node(p, 'SE') | ||
q = self.get_sub_node(q, 'SW') | ||
# move west | ||
elif direction == 'W': | ||
p = self.get_sub_node(p, 'NW') | ||
q = self.get_sub_node(q, 'NE') | ||
# move south | ||
elif direction == 'S': | ||
p = self.get_sub_node(p, 'SW') | ||
q = self.get_sub_node(q, 'NW') | ||
# move north | ||
elif direction == 'N': | ||
p = self.get_sub_node(p, 'NE') | ||
q = self.get_sub_node(q, 'SE') | ||
else: | ||
sys.exit('move direction error...') | ||
return [p, q] | ||
|
||
def get_round_trip_path(self, last, pivot): | ||
direction = self.get_vector_direction(last, pivot) | ||
if direction == 'E': | ||
return [self.get_sub_node(pivot, 'SE'), | ||
self.get_sub_node(pivot, 'NE')] | ||
elif direction == 'S': | ||
return [self.get_sub_node(pivot, 'SW'), | ||
self.get_sub_node(pivot, 'SE')] | ||
elif direction == 'W': | ||
return [self.get_sub_node(pivot, 'NW'), | ||
self.get_sub_node(pivot, 'SW')] | ||
elif direction == 'N': | ||
return [self.get_sub_node(pivot, 'NE'), | ||
self.get_sub_node(pivot, 'NW')] | ||
else: | ||
sys.exit('get_round_trip_path: last->pivot direction error.') | ||
|
||
def get_vector_direction(self, p, q): | ||
# east | ||
if p[0] == q[0] and p[1] < q[1]: | ||
return 'E' | ||
# west | ||
elif p[0] == q[0] and p[1] > q[1]: | ||
return 'W' | ||
# south | ||
elif p[0] < q[0] and p[1] == q[1]: | ||
return 'S' | ||
# north | ||
elif p[0] > q[0] and p[1] == q[1]: | ||
return 'N' | ||
else: | ||
sys.exit('get_vector_direction: Only E/W/S/N direction supported.') | ||
|
||
def get_sub_node(self, node, direction): | ||
if direction == 'SE': | ||
return [2*node[0]+1, 2*node[1]+1] | ||
elif direction == 'SW': | ||
return [2*node[0]+1, 2*node[1]] | ||
elif direction == 'NE': | ||
return [2*node[0], 2*node[1]+1] | ||
elif direction == 'NW': | ||
return [2*node[0], 2*node[1]] | ||
else: | ||
sys.exit('get_sub_node: sub-node direction error.') | ||
|
||
def get_interpolated_path(self, p, q): | ||
# direction p->q: southwest / northeast | ||
if (p[0] < q[0]) ^ (p[1] < q[1]): | ||
ipx = [p[0], p[0], q[0]] | ||
ipy = [p[1], q[1], q[1]] | ||
# direction p->q: southeast / northwest | ||
else: | ||
ipx = [p[0], q[0], q[0]] | ||
ipy = [p[1], p[1], q[1]] | ||
return ipx, ipy | ||
|
||
def get_intermediate_node(self, p, q): | ||
p_ngb, q_ngb = set(), set() | ||
|
||
for m, n in self.edge: | ||
if m == p: | ||
p_ngb.add(n) | ||
if n == p: | ||
p_ngb.add(m) | ||
if m == q: | ||
q_ngb.add(n) | ||
if n == q: | ||
q_ngb.add(m) | ||
|
||
itsc = p_ngb.intersection(q_ngb) | ||
if len(itsc) == 0: | ||
sys.exit('get_intermediate_node: \ | ||
no intermediate node between', p, q) | ||
elif len(itsc) == 1: | ||
return list(itsc)[0] | ||
else: | ||
sys.exit('get_intermediate_node: \ | ||
more than 1 intermediate node between', p, q) | ||
|
||
def visualize_path(self, edge, path, start): | ||
def coord_transform(p): | ||
return [2*p[1] + 0.5, 2*p[0] + 0.5] | ||
|
||
if do_animation: | ||
last = path[0][0] | ||
trajectory = [[last[1]], [last[0]]] | ||
for p, q in path: | ||
distance = math.hypot(p[0]-last[0], p[1]-last[1]) | ||
if distance <= 1.0: | ||
trajectory[0].append(p[1]) | ||
trajectory[1].append(p[0]) | ||
else: | ||
ipx, ipy = self.get_interpolated_path(last, p) | ||
trajectory[0].extend(ipy) | ||
trajectory[1].extend(ipx) | ||
|
||
last = q | ||
|
||
trajectory[0].append(last[1]) | ||
trajectory[1].append(last[0]) | ||
|
||
for idx, state in enumerate(np.transpose(trajectory)): | ||
plt.cla() | ||
# for stopping simulation with the esc key. | ||
plt.gcf().canvas.mpl_connect( | ||
'key_release_event', | ||
lambda event: [exit(0) if event.key == 'escape' else None]) | ||
|
||
# draw spanning tree | ||
plt.imshow(self.occ_map, 'gray') | ||
for p, q in edge: | ||
p = coord_transform(p) | ||
q = coord_transform(q) | ||
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc') | ||
sx, sy = coord_transform(start) | ||
plt.plot([sx], [sy], 'pr', markersize=10) | ||
|
||
# draw move path | ||
plt.plot(trajectory[0][:idx+1], trajectory[1][:idx+1], '-k') | ||
plt.plot(state[0], state[1], 'or') | ||
plt.axis('equal') | ||
plt.grid(True) | ||
plt.pause(0.01) | ||
|
||
else: | ||
# draw spanning tree | ||
plt.imshow(self.occ_map, 'gray') | ||
for p, q in edge: | ||
p = coord_transform(p) | ||
q = coord_transform(q) | ||
plt.plot([p[0], q[0]], [p[1], q[1]], '-oc') | ||
sx, sy = coord_transform(start) | ||
plt.plot([sx], [sy], 'pr', markersize=10) | ||
|
||
# draw move path | ||
last = path[0][0] | ||
for p, q in path: | ||
distance = math.hypot(p[0]-last[0], p[1]-last[1]) | ||
if distance == 1.0: | ||
plt.plot([last[1], p[1]], [last[0], p[0]], '-k') | ||
else: | ||
ipx, ipy = self.get_interpolated_path(last, p) | ||
plt.plot(ipy, ipx, '-k') | ||
plt.arrow(p[1], p[0], q[1]-p[1], q[0]-p[0], head_width=0.2) | ||
last = q | ||
|
||
plt.show() | ||
|
||
|
||
def main(): | ||
dir_path = os.path.dirname(os.path.realpath(__file__)) | ||
img = plt.imread(os.path.join(dir_path, 'map', 'test_2.png')) | ||
STC_planner = SpiralSpanningTreeCoveragePlanner(img) | ||
start = (10, 0) | ||
edge, route, path = STC_planner.plan(start) | ||
STC_planner.visualize_path(edge, path, start) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import os | ||
import sys | ||
import matplotlib.pyplot as plt | ||
from unittest import TestCase | ||
|
||
sys.path.append(os.path.dirname( | ||
os.path.abspath(__file__)) + "/../PathPlanning/SpiralSpanningTreeCPP") | ||
try: | ||
import spiral_spanning_tree_coverage_path_planner | ||
except ImportError: | ||
raise | ||
|
||
spiral_spanning_tree_coverage_path_planner.do_animation = True | ||
|
||
|
||
class TestPlanning(TestCase): | ||
def spiral_stc_cpp(self, img, start): | ||
num_free = 0 | ||
for i in range(img.shape[0]): | ||
for j in range(img.shape[1]): | ||
num_free += img[i][j] | ||
|
||
STC_planner = spiral_spanning_tree_coverage_path_planner.\ | ||
SpiralSpanningTreeCoveragePlanner(img) | ||
|
||
edge, route, path = STC_planner.plan(start) | ||
|
||
covered_nodes = set() | ||
for p, q in edge: | ||
covered_nodes.add(p) | ||
covered_nodes.add(q) | ||
|
||
# assert complete coverage | ||
self.assertEqual(len(covered_nodes), num_free / 4) | ||
|
||
def test_spiral_stc_cpp_1(self): | ||
img_dir = os.path.dirname( | ||
os.path.abspath(__file__)) + \ | ||
"/../PathPlanning/SpiralSpanningTreeCPP" | ||
img = plt.imread(os.path.join(img_dir, 'map', 'test.png')) | ||
start = (0, 0) | ||
self.spiral_stc_cpp(img, start) | ||
|
||
def test_spiral_stc_cpp_2(self): | ||
img_dir = os.path.dirname( | ||
os.path.abspath(__file__)) + \ | ||
"/../PathPlanning/SpiralSpanningTreeCPP" | ||
img = plt.imread(os.path.join(img_dir, 'map', 'test_2.png')) | ||
start = (10, 0) | ||
self.spiral_stc_cpp(img, start) | ||
|
||
def test_spiral_stc_cpp_3(self): | ||
img_dir = os.path.dirname( | ||
os.path.abspath(__file__)) + \ | ||
"/../PathPlanning/SpiralSpanningTreeCPP" | ||
img = plt.imread(os.path.join(img_dir, 'map', 'test_3.png')) | ||
start = (0, 0) | ||
self.spiral_stc_cpp(img, start) |