This repository contains the slides and the Jupyter notebooks for "Modal Symbolic Learning: A Tutorial" (online video lectures here).
You can inspect the notebooks without cloning the repo; simply click on any ipynb
file above.
Otherwise... Clone the repo, open a Julia session:
git clone https://github.com/aclai-lab/modal-symbolic-learning-course/
cd modal-symbolic-learning-course
julia -t8 # With 8 threads, for example
Then, activate and instantiate the environment:
Pkg.activate(".")
Pkg.instantiate()
This will install all dependencies, including:
- IJulia.jl: Julia backend for Jupyter Notebook;
- MLJ.jl: general-purpose machine learning framework;
- Sole.jl: framework for (modal) symbolic learning;
- ModalDecisionTrees.jl: machine learning algorithm for extracting modal decision trees.
To open the notebooks, start Jupyter Notebook with the Julia backend by typing:
using IJulia; IJulia.notebook(; dir=".")
Have fun! 😄
- Documentation for MLJ: https://alan-turing-institute.github.io/MLJ.jl
- Documentation for Sole: https://aclai-lab.github.io/Sole.jl/
- Documentation for SoleLogics: https://aclai-lab.github.io/SoleLogics.jl/
- Documentation for SoleModels: https://aclai-lab.github.io/SoleModels.jl/
- Documentation for ModalDecisionTrees: https://aclai-lab.github.io/ModalDecisionTrees.jl/