Skip to content

Incomplete validation in `SparseAdd`

Moderate severity GitHub Reviewed Published May 13, 2021 in tensorflow/tensorflow • Updated Nov 13, 2024

Package

pip tensorflow (pip)

Affected versions

< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2

Patched versions

2.1.4
2.2.3
2.3.3
2.4.2
pip tensorflow-cpu (pip)
< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.1.4
2.2.3
2.3.3
2.4.2
pip tensorflow-gpu (pip)
< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.1.4
2.2.3
2.3.3
2.4.2

Description

Impact

Incomplete validation in SparseAdd results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data:

import tensorflow as tf

a_indices = tf.zeros([10, 97], dtype=tf.int64)
a_values = tf.zeros([10], dtype=tf.int64)
a_shape = tf.zeros([0], dtype=tf.int64)

b_indices = tf.zeros([0, 0], dtype=tf.int64)
b_values = tf.zeros([0], dtype=tf.int64)
b_shape = tf.zeros([0], dtype=tf.int64)
  
thresh = 0

tf.raw_ops.SparseAdd(a_indices=a_indices,
                    a_values=a_values,
                    a_shape=a_shape,
                    b_indices=b_indices,
                    b_values=b_values,
                    b_shape=b_shape,
                    thresh=thresh)

The implementation has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of *_indices matches the size of corresponding *_shape. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation.

Patches

We have patched the issue in GitHub commit 6fd02f44810754ae7481838b6a67c5df7f909ca3 followed by GitHub commit 41727ff06111117bdf86b37db198217fd7a143cc.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

References

@mihaimaruseac mihaimaruseac published to tensorflow/tensorflow May 13, 2021
Published by the National Vulnerability Database May 14, 2021
Reviewed May 17, 2021
Published to the GitHub Advisory Database May 21, 2021
Last updated Nov 13, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Local
Attack Complexity Low
Attack Requirements Present
Privileges Required Low
User interaction None
Vulnerable System Impact Metrics
Confidentiality None
Integrity Low
Availability High
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:L/VA:H/SC:N/SI:N/SA:N

EPSS score

0.092%
(41st percentile)

CVE ID

CVE-2021-29609

GHSA ID

GHSA-cjc7-49v2-jp64

Source code

No known source code
Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.