forked from math-comp/analysis
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from affeldt-aist/vitali
wip
- Loading branch information
Showing
2 changed files
with
103 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) | ||
From HB Require Import structures. | ||
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap. | ||
From mathcomp.classical Require Import boolp classical_sets functions. | ||
From mathcomp.classical Require Import cardinality fsbigop mathcomp_extra. | ||
Require Import signed reals ereal topology normedtype sequences esum measure. | ||
Require Import lebesgue_measure lebesgue_integral numfun derive. | ||
|
||
Set Implicit Arguments. | ||
Unset Strict Implicit. | ||
Unset Printing Implicit Defensive. | ||
Import Order.TTheory GRing.Theory Num.Def Num.Theory. | ||
Import numFieldTopology.Exports. | ||
|
||
Local Open Scope classical_set_scope. | ||
Local Open Scope ring_scope. | ||
|
||
Section AC_BV. | ||
Variable R : realType. | ||
|
||
Definition AC (f : R -> R) (a b : R) := forall e : {posnum R}, | ||
exists d : {posnum R}, forall n (ab : 'I_n -> R * R), | ||
(forall i, `[(ab i).1, (ab i).2]%classic `<=` `[a, b]%classic) /\ | ||
trivIset setT (fun i => `[(ab i).1, (ab i).2]%classic) /\ | ||
\sum_(k < n) maxr 0 ((ab k).2 - (ab k).1) < d%:num -> | ||
\sum_(k < n) maxr 0 (f (ab k).2 - f (ab k).1) < e%:num. | ||
|
||
Definition BV (f : R -> R) (a b : R) := | ||
exists g h : R -> R, | ||
{in `[a, b], {homo g : x y / x <= y}} /\ | ||
{in `[a, b], {homo h : x y / x <= y}} /\ | ||
{in `[a, b], f =1 g \- h}. | ||
|
||
End AC_BV. | ||
|
||
Section vitali. | ||
Variables (R : realType) (I : eqType). | ||
Let mu := @lebesgue_measure R. | ||
|
||
Definition Ball (C : R * {posnum R}) := ball_ normr C.1 C.2%:num. | ||
|
||
Definition Ball5 (C : R * {posnum R}) := Ball (C.1, (C.2%:num *+ 5)%:pos). | ||
|
||
Definition bounded (E : set R) := (mu E < +oo)%E. | ||
|
||
Lemma vitali (C : I -> R * {posnum R}) : | ||
exists iot : nat -> I, let D := C \o iot in | ||
(forall i, exists2 j, | ||
Ball (C i) `&` Ball (D j) !=set0 & | ||
(D j).2%:num >= (C i).2%:num * 2^-1) /\ | ||
\bigcup_i (Ball (C i)) `<=` \bigcup_j (Ball5 (D j)). | ||
Proof. | ||
Admitted. | ||
|
||
Definition is_vitali_covering (E : set R) (V : I -> R * {posnum R}) := | ||
forall x (e : {posnum R}), x \in E -> | ||
exists2 i, x \in Ball (V i) & (V i).2%:num < e%:num. | ||
|
||
Local Open Scope measure_scope. | ||
Theorem vitali_covering_theorem (E : set R) (V : I -> R * {posnum R}) : | ||
is_vitali_covering E V -> bounded E -> exists iot : nat -> I, | ||
trivIset setT (fun j => Ball (V (iot j))) /\ | ||
mu^* (E `\` \bigcup_k (Ball (V (iot k)))) = 0%E /\ | ||
(forall e : {posnum R}, exists N, | ||
mu^* (E `\` \big[setU/set0]_(k < N) (Ball (V (iot k)))) < e%:num%:E)%E. | ||
Proof. | ||
Admitted. | ||
|
||
Corollary vitali_covering_theorem2 (E : set R) (V : I -> R * {posnum R}) : | ||
is_vitali_covering E V -> bounded E -> forall e : {posnum R}, | ||
exists n (iot : 'I_n -> I), | ||
(mu (\big[setU/set0]_(i < n) (Ball (V (iot i)))) < mu^* E + e%:num%:E /\ | ||
mu^* (E `&` \big[setU/set0]_(i < n) (Ball (V (iot i)))) > mu^* E + e%:num%:E)%E. | ||
Proof. | ||
Admitted. | ||
|
||
Local Close Scope measure_scope. | ||
|
||
End vitali. | ||
|
||
Section lebesgue_differentiation. | ||
Variables (R : realType) (a b : R) (f : R^o -> R^o). | ||
Let mu := @lebesgue_measure R. | ||
Hypothesis f_nd : {in `[a, b], {homo f : x y / x <= y}}. | ||
|
||
Theorem Lebesgue_differentiation : | ||
{ae mu, forall x, x \in `[a, b] -> derivable f x 1 /\ 0 <= derive f x 1 } /\ | ||
\int[mu]_(x in `[a, b]) derive f x 1 <= f b - f a. | ||
Proof. | ||
Admitted. | ||
|
||
End lebesgue_differentiation. | ||
|
||
Section Lebesgue_differentiation_corollary. | ||
Variables (R : realType) (a b : R) (f : R -> R). | ||
Let mu := @lebesgue_measure R. | ||
|
||
Corollary Lebesgue_differentiation_corollary : | ||
BV f a b -> | ||
{ae mu, forall x, x \in `[a, b] -> derivable f x 1} /\ | ||
mu.-integrable (derive f x 1) | ||
|
||
End Lebesgue_differentiation_corollary. |