Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix box filtering #2001

Merged
merged 3 commits into from
Oct 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions albumentations/augmentations/crops/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
ZeroOneRangeType,
check_0plus,
check_01,
nondecreasing,
)
from albumentations.core.transforms_interface import BaseTransformInitSchema, DualTransform
from albumentations.core.types import (
Expand Down Expand Up @@ -672,8 +673,8 @@ class RandomResizedCrop(_BaseRandomSizedCrop):
_targets = (Targets.IMAGE, Targets.MASK, Targets.BBOXES, Targets.KEYPOINTS)

class InitSchema(BaseTransformInitSchema):
scale: Annotated[tuple[float, float], AfterValidator(check_01)]
ratio: Annotated[tuple[float, float], AfterValidator(check_0plus)]
scale: Annotated[tuple[float, float], AfterValidator(check_01), AfterValidator(nondecreasing)]
ternaus marked this conversation as resolved.
Show resolved Hide resolved
ratio: Annotated[tuple[float, float], AfterValidator(check_0plus), AfterValidator(nondecreasing)]
width: int | None = Field(
None,
deprecated="Initializing with 'height' and 'width' is deprecated. Use size instead.",
Expand Down
22 changes: 17 additions & 5 deletions albumentations/core/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,16 +132,28 @@ def ensure_transforms_valid(self, transforms: Sequence[object]) -> None:

def postprocess(self, data: dict[str, Any]) -> dict[str, Any]:
image_shape = get_shape(data["image"])
data = self._process_data_fields(data, image_shape)
data = self.remove_label_fields_from_data(data)
return self._convert_sequence_inputs(data)

def _process_data_fields(self, data: dict[str, Any], image_shape: tuple[int, int]) -> dict[str, Any]:
for data_name in set(self.data_fields) & set(data.keys()):
data[data_name] = self.filter(data[data_name], image_shape)
data[data_name] = self._process_single_field(data_name, data[data_name], image_shape)
return data

def _process_single_field(self, data_name: str, field_data: Any, image_shape: tuple[int, int]) -> Any:
ternaus marked this conversation as resolved.
Show resolved Hide resolved
field_data = self.filter(field_data, image_shape)

if data_name == "keypoints" and len(field_data) == 0:
field_data = self._create_empty_keypoints_array()

if data_name == "keypoints" and len(data[data_name]) == 0:
data[data_name] = np.array([], dtype=np.float32).reshape(0, len(self.params.format))
return self.check_and_convert(field_data, image_shape, direction="from")

data[data_name] = self.check_and_convert(data[data_name], image_shape, direction="from")
# Convert back to list of lists if original input was a list
def _create_empty_keypoints_array(self) -> np.ndarray:
return np.array([], dtype=np.float32).reshape(0, len(self.params.format))

def _convert_sequence_inputs(self, data: dict[str, Any]) -> dict[str, Any]:
ternaus marked this conversation as resolved.
Show resolved Hide resolved
for data_name in set(self.data_fields) & set(data.keys()):
if self.is_sequence_input.get(data_name, False):
data[data_name] = data[data_name].tolist()
return data
Expand Down
16 changes: 16 additions & 0 deletions tests/test_bbox.py
Original file line number Diff line number Diff line change
Expand Up @@ -1522,3 +1522,19 @@ def test_bboxes_from_masks_output_type():
result = bboxes_from_masks(masks)
assert isinstance(result, np.ndarray)
assert result.dtype == np.int32


def test_random_resized_crop():
transform = A.Compose(
[
A.RandomResizedCrop((100, 100), scale=(0.01, 0.1), ratio=(1, 1)),
],
bbox_params=A.BboxParams(
format="coco",
label_fields=["label"],
),
)
boxes = [[10,10,20,20], [5,5,10,10], [450, 450, 5,5], [250,250,5,5]]
labels = [1,2,3,4]
res = transform(image=np.zeros((500,500,3), dtype='uint8'), bboxes=boxes, label=labels)
assert len(res['bboxes']) == len(res['label'])
ternaus marked this conversation as resolved.
Show resolved Hide resolved
Loading