Skip to content

andyhahaha/Uncertainty-Mnist-with-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Uncertainty_Mnist

Uncertainty estimation on Mnist dataset

This is a PyTorch implementation of Dropout Uncertainty on Mnist. The experiment setting is based on Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning at 5.2 Model Uncertainty in Classification Tasks.

Installation

  1. Install Pytorch Pytorch
conda install pytorch torchvision -c pytorch
  1. Clone this repository
git clone https://github.com/andyhahaha/Uncertainty_Mnist

Usage

  1. Train Lenet standard and Lenet dropout
python main.py --mode 0
  1. Test Lenet standard and Lenet dropout
python main.py --mode 1
  1. Test the Lenet dropout on rotated Mnist image
python main.py --mode 2

Result

These results show the uncertainty of different rotated digits.

0 1
2 3
4 5
6 7
8 9

About

Uncertainty estimation on Mnist dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages