-
Notifications
You must be signed in to change notification settings - Fork 3.4k
Rollup
在Doris里Rollup作为一份聚合物化视图,其在查询中可以起到两个作用:
- 索引
- 聚合数据(仅用于聚合模型,即aggregate key)
但是为了命中Rollup需要满足一定的条件,并且可以通过执行计划中ScanNdoe节点的PreAggregation的值来判断是否可以命中Rollup,以及Rollup字段来判断命中的是哪一张Rollup表。
Base表:基表。
Rollup:一般指基于Base表创建的Rollup表,但在一些场景包括Base以及Rollup表。
前面的查询实践中已经介绍过Doris的前缀索引,即Doris会把Base/Rollup表中的前36个字节(有varchar类型则可能导致前缀索引不满36个字节,varchar会截断前缀索引,并且最多使用varchar的20个字节)在底层存储引擎单独生成一份排序的稀疏索引数据(数据也是排序的,用索引定位,然后在数据中做二分查找),然后在查询的时候会根据查询中的条件来匹配每个Base/Rollup的前缀索引,并且选择出匹配前缀索引最长的一个Base/Rollup。
-----> 从左到右匹配
+----+----+----+----+----+----+
| c1 | c2 | c3 | c4 | c5 |... |
如上图,取查询中where以及on上下推到ScanNode的条件,从前缀索引的第一列开始匹配,检查条件中是否有这些列,有则累计匹配的长度,直到匹配不上或者36字节结束(varchar类型的列只能匹配20个字节,并且会匹配不足36个字节截断前缀索引),然后选择出匹配长度最长的一个Base/Rollup,下面举例说明,创建了一张Base表以及四张rollup:
+---------------+-------+--------------+------+-------+---------+-------+
| IndexName | Field | Type | Null | Key | Default | Extra |
+---------------+-------+--------------+------+-------+---------+-------+
| test | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup_index1 | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup_index2 | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k1 | TINYINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup_index3 | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup_index4 | k4 | BIGINT | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
+---------------+-------+--------------+------+-------+---------+-------+
三张表的前缀索引分别为Base(k1 ,k2, k3, k4, k5, k6, k7),rollup_index1(k9),rollup_index2(k9), rollup_index3(k4, k5, k6, k1, k2, k3, k7),rollup_index4(k4, k6, k5, k1, k2, k3, k7)能用的上前缀索引的列上的条件需要是= < > <= >= in between这些并且这些条件是并列的且关系即用and连接,对于or、!=等这些不能命中,然后看以下查询:
select * from test where k1 = 1 and k2 > 3;
有k1以及k2上的条件,检查只有Base的第一列含有条件里的k1,所以匹配最长的前缀索引即test,explain一下:
| 0:OlapScanNode |
| TABLE: test |
| PREAGGREGATION: OFF. Reason: No AggregateInfo |
| PREDICATES: `k1` = 1, `k2` > 3 |
| partitions=1/1 |
| rollup: test |
| buckets=1/10 |
| cardinality=-1 |
| avgRowSize=0.0 |
| numNodes=0 |
| tuple ids: 0
再看以下查询:
select * from test where k9 in ("xxx", "yyyy") and k1 = 10;
有k4以及k5的条件,检查rollup_index3、rollup_index4的第一列含有k4,但是rollup_index3的第二列含有k5,所以匹配的前缀索引最长。
| 0:OlapScanNode |
| TABLE: test |
| PREAGGREGATION: OFF. Reason: No AggregateInfo |
| PREDICATES: `k4` >= 1, `k5` > 3 |
| partitions=1/1 |
| rollup: rollup_index3 |
| buckets=10/10 |
| cardinality=-1 |
| avgRowSize=0.0 |
| numNodes=0 |
| tuple ids: 0
现在我们尝试匹配含有varchar列上的条件,如下:
select * from test where k9 in ("xxx", "yyyy") and k1 = 10;
有k9以及k1两个条件,rollup_index1以及rollup_index2的第一列都含有k9,按理说这里选择这两个rollup都可以命中前缀索引并且效果是一样的随机选择一个即可(因为这里varchar刚好20个字节,前缀索引不足36个字节被截断),但是当前策略这里还会继续匹配k1,因为rollup_index1的第二列为k1,所以选择了rollup_index1,其实后面的k1条件并不会起到加速的作用。(如果对于前缀索引外的条件需要其可以起到加速查询的目的,可以通过建立Bloom Filter过滤器加速,具体help alter table,一般对于字符串类型建立即可,因为Doris针对列存在Block级别对于整形、日期已经有Min/Max索引) 以下是explain的结果。
| 0:OlapScanNode |
| TABLE: test |
| PREAGGREGATION: OFF. Reason: No AggregateInfo |
| PREDICATES: `k9` IN ('xxx', 'yyyy'), `k1` = 10 |
| partitions=1/1 |
| rollup: rollup_index1 |
| buckets=1/10 |
| cardinality=-1 |
| avgRowSize=0.0 |
| numNodes=0 |
| tuple ids: 0
最后看一个多张Rollup都可以命中的查询:
select * from test where k4 < 1000 and k5 = 80 and k6 >= 10000;
有k4,k5,k6三个条件,rollup_index3以及rollup_index4的前3列分别含有这三列,所以两者匹配的前缀索引长度一致,选取两者都可以,当前默认的策略为选取了比较早创建的一张rollup,这里为rollup_index3。
| 0:OlapScanNode |
| TABLE: test |
| PREAGGREGATION: OFF. Reason: No AggregateInfo |
| PREDICATES: `k4` < 1000, `k5` = 80, `k6` >= 10000.0 |
| partitions=1/1 |
| rollup: rollup_index3 |
| buckets=10/10 |
| cardinality=-1 |
| avgRowSize=0.0 |
| numNodes=0 |
| tuple ids: 0
如果稍微修改上面的查询为:
select * from test where k4 < 1000 and k5 = 80 or k6 >= 10000;
则这里的查询不能命中前缀索引。(甚至Doris存储引擎内的任何Min/Max,BloomFilter索引都不能起作用)
当然一般的聚合物化视图其聚合数据的功能是必不可少的,这类物化视图对于聚合类查询或报表类查询都有非常大的帮助,要命中聚合物化视图需要下面一些前提:
- 查询或者子查询中涉及的所有列都存在一张独立的Rollup中。
- 如果查询或者子查询中有Join,则Join的类型需要是Inner join。
以下是可以命中Rollup的一些聚合查询的种类,
+--------------+-------+-------------------------+-------+-------+-------+
|列类型\查询类型| Sum | Distinct/Count Distinct | Min | Max | Ndv |
+--------------+-------+-------------------------+-------+-------+-------+
| Key | false | true | true | true | true |
+--------------+-------+-------------------------+-------+-------+-------+
| Value(Sum) | true | false | false | false | false |
+--------------+-------+-------------------------+-------+-------+-------+
|Value(Replace)| false | false | false | false | false |
+--------------+-------+-------------------------+-------+-------+-------+
| Value(Min) | false | false | true | false | false |
+--------------+-------+-------------------------+-------+-------+-------+
| Value(Max) | false | false | false | true | false |
+--------------+-------+-------------------------+-------+-------+-------+
如果符合上述条件,则针对聚合模型在判断命中rollup的时候会有两个阶段:
- 首先通过条件匹配出命中前缀索引索引最长的Rollup表,见上述索引策略。
- 然后比较Rollup的行数,选择最小的一张Rollup。
如下Base表以及Rollup:
+-------------+-------+--------------+------+-------+---------+-------+
| IndexName | Field | Type | Null | Key | Default | Extra |
+-------------+-------+--------------+------+-------+---------+-------+
| test_rollup | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k6 | CHAR(5) | Yes | true | N/A | |
| | k7 | DATE | Yes | true | N/A | |
| | k8 | DATETIME | Yes | true | N/A | |
| | k9 | VARCHAR(20) | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup2 | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
| | | | | | | |
| rollup1 | k1 | TINYINT | Yes | true | N/A | |
| | k2 | SMALLINT | Yes | true | N/A | |
| | k3 | INT | Yes | true | N/A | |
| | k4 | BIGINT | Yes | true | N/A | |
| | k5 | DECIMAL(9,3) | Yes | true | N/A | |
| | k10 | DOUBLE | Yes | false | N/A | MAX |
| | k11 | FLOAT | Yes | false | N/A | SUM |
+-------------+-------+--------------+------+-------+---------+-------+
看以下查询:
select sum(k11) from test_rollup where k1 = 10 and k2 > 200 and k3 in (1,2,3);
首先判断查询是否可以命中聚合的Rollup表,经过查上面的图是可以的,然后条件中含有k1,k2,k3三个条件,这三个条件test_rollup、rollup1、rollup2的前三列都含有,所以前缀索引长度一致,然后比较行数显然rollup2的聚合程度最高行数最少所以选取Rollup2。
| 0:OlapScanNode |
| TABLE: test_rollup |
| PREAGGREGATION: ON |
| PREDICATES: `k1` = 10, `k2` > 200, `k3` IN (1, 2, 3) |
| partitions=1/1 |
| rollup: rollup2 |
| buckets=1/10 |
| cardinality=-1 |
| avgRowSize=0.0 |
| numNodes=0 |
| tuple ids: 0 |
+-----------------------------------------------------------+
Documentation license here.