-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1228 from npcmaci/dev-postgresql
create the application folder for the healthcare model zoo
- Loading branch information
Showing
1 changed file
with
318 additions
and
0 deletions.
There are no files selected for viewing
318 changes: 318 additions & 0 deletions
318
examples/healthcare/application/Malaria_Detection/train_cnn.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from singa import singa_wrap as singa | ||
from singa import device | ||
from singa import tensor | ||
from singa import opt | ||
import numpy as np | ||
import time | ||
import argparse | ||
import sys | ||
sys.path.append("../../..") | ||
|
||
from PIL import Image | ||
|
||
from healthcare.data import malaria | ||
from healthcare.models import malaria_net | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
|
||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
|
||
# Data augmentation | ||
def augmentation(x, batch_size): | ||
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric') | ||
for data_num in range(0, batch_size): | ||
offset = np.random.randint(8, size=2) | ||
x[data_num, :, :, :] = xpad[data_num, :, | ||
offset[0]:offset[0] + x.shape[2], | ||
offset[1]:offset[1] + x.shape[2]] | ||
if_flip = np.random.randint(2) | ||
if (if_flip): | ||
x[data_num, :, :, :] = x[data_num, :, :, ::-1] | ||
return x | ||
|
||
|
||
# Calculate accuracy | ||
def accuracy(pred, target): | ||
# y is network output to be compared with ground truth (int) | ||
y = np.argmax(pred, axis=1) | ||
a = y == target | ||
correct = np.array(a, "int").sum() | ||
return correct | ||
|
||
|
||
# Data partition according to the rank | ||
def partition(global_rank, world_size, train_x, train_y, val_x, val_y): | ||
# Partition training data | ||
data_per_rank = train_x.shape[0] // world_size | ||
idx_start = global_rank * data_per_rank | ||
idx_end = (global_rank + 1) * data_per_rank | ||
train_x = train_x[idx_start:idx_end] | ||
train_y = train_y[idx_start:idx_end] | ||
|
||
# Partition evaluation data | ||
data_per_rank = val_x.shape[0] // world_size | ||
idx_start = global_rank * data_per_rank | ||
idx_end = (global_rank + 1) * data_per_rank | ||
val_x = val_x[idx_start:idx_end] | ||
val_y = val_y[idx_start:idx_end] | ||
return train_x, train_y, val_x, val_y | ||
|
||
|
||
# Function to all reduce NUMPY accuracy and loss from multiple devices | ||
def reduce_variable(variable, dist_opt, reducer): | ||
reducer.copy_from_numpy(variable) | ||
dist_opt.all_reduce(reducer.data) | ||
dist_opt.wait() | ||
output = tensor.to_numpy(reducer) | ||
return output | ||
|
||
|
||
def resize_dataset(x, image_size): | ||
num_data = x.shape[0] | ||
dim = x.shape[1] | ||
X = np.zeros(shape=(num_data, dim, image_size, image_size), | ||
dtype=np.float32) | ||
for n in range(0, num_data): | ||
for d in range(0, dim): | ||
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize( | ||
(image_size, image_size), Image.BILINEAR), | ||
dtype=np.float32) | ||
return X | ||
|
||
|
||
def run(global_rank, | ||
world_size, | ||
dir_path, | ||
max_epoch, | ||
batch_size, | ||
model, | ||
data, | ||
sgd, | ||
graph, | ||
verbosity, | ||
dist_option='plain', | ||
spars=None, | ||
precision='float32'): | ||
# now CPU version only, could change to GPU device for GPU-support machines | ||
dev = device.get_default_device() | ||
dev.SetRandSeed(0) | ||
np.random.seed(0) | ||
if data == 'malaria': | ||
|
||
train_x, train_y, val_x, val_y = malaria.load(dir_path=dir_path) | ||
else: | ||
print( | ||
'Wrong dataset!' | ||
) | ||
sys.exit(0) | ||
|
||
num_channels = train_x.shape[1] | ||
image_size = train_x.shape[2] | ||
data_size = np.prod(train_x.shape[1:train_x.ndim]).item() | ||
num_classes = (np.max(train_y) + 1).item() | ||
|
||
if model == 'cnn': | ||
model = malaria_net.create_model(model_option='cnn', num_channels=num_channels, | ||
num_classes=num_classes) | ||
else: | ||
print( | ||
'Wrong model!' | ||
) | ||
sys.exit(0) | ||
|
||
# For distributed training, sequential has better performance | ||
if hasattr(sgd, "communicator"): | ||
DIST = True | ||
sequential = True | ||
else: | ||
DIST = False | ||
sequential = False | ||
|
||
if DIST: | ||
train_x, train_y, val_x, val_y = partition(global_rank, world_size, | ||
train_x, train_y, val_x, | ||
val_y) | ||
|
||
if model.dimension == 4: | ||
tx = tensor.Tensor( | ||
(batch_size, num_channels, model.input_size, model.input_size), dev, | ||
singa_dtype[precision]) | ||
elif model.dimension == 2: | ||
tx = tensor.Tensor((batch_size, data_size), | ||
dev, singa_dtype[precision]) | ||
np.reshape(train_x, (train_x.shape[0], -1)) | ||
np.reshape(val_x, (val_x.shape[0], -1)) | ||
|
||
ty = tensor.Tensor((batch_size,), dev, tensor.int32) | ||
num_train_batch = train_x.shape[0] // batch_size | ||
num_val_batch = val_x.shape[0] // batch_size | ||
idx = np.arange(train_x.shape[0], dtype=np.int32) | ||
|
||
# Attach model to graph | ||
model.set_optimizer(sgd) | ||
model.compile([tx], is_train=True, use_graph=graph, sequential=sequential) | ||
dev.SetVerbosity(verbosity) | ||
|
||
# Training and evaluation loop | ||
for epoch in range(max_epoch): | ||
start_time = time.time() | ||
np.random.shuffle(idx) | ||
|
||
if global_rank == 0: | ||
print('Starting Epoch %d:' % (epoch)) | ||
|
||
# Training phase | ||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
model.train() | ||
for b in range(num_train_batch): | ||
# if b % 100 == 0: | ||
# print ("b: \n", b) | ||
# Generate the patch data in this iteration | ||
x = train_x[idx[b * batch_size:(b + 1) * batch_size]] | ||
if model.dimension == 4: | ||
x = augmentation(x, batch_size) | ||
if (image_size != model.input_size): | ||
x = resize_dataset(x, model.input_size) | ||
x = x.astype(np_dtype[precision]) | ||
y = train_y[idx[b * batch_size:(b + 1) * batch_size]] | ||
|
||
# Copy the patch data into input tensors | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
# Train the model | ||
out, loss = model(tx, ty, dist_option, spars) | ||
train_correct += accuracy(tensor.to_numpy(out), y) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
|
||
# print('batch training loss = %f' % train_loss, flush=True) | ||
|
||
if DIST: | ||
# Reduce the evaluation accuracy and loss from multiple devices | ||
reducer = tensor.Tensor((1,), dev, tensor.float32) | ||
train_correct = reduce_variable(train_correct, sgd, reducer) | ||
train_loss = reduce_variable(train_loss, sgd, reducer) | ||
|
||
if global_rank == 0: | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size * world_size)), | ||
flush=True) | ||
|
||
# Evaluation phase | ||
model.eval() | ||
for b in range(num_val_batch): | ||
x = val_x[b * batch_size:(b + 1) * batch_size] | ||
if model.dimension == 4: | ||
if (image_size != model.input_size): | ||
x = resize_dataset(x, model.input_size) | ||
x = x.astype(np_dtype[precision]) | ||
y = val_y[b * batch_size:(b + 1) * batch_size] | ||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
out_test = model(tx) | ||
test_correct += accuracy(tensor.to_numpy(out_test), y) | ||
|
||
if DIST: | ||
# Reduce the evaulation accuracy from multiple devices | ||
test_correct = reduce_variable(test_correct, sgd, reducer) | ||
|
||
# Output the evaluation accuracy | ||
if global_rank == 0: | ||
print('Evaluation accuracy = %f, Elapsed Time = %fs' % | ||
(test_correct / (num_val_batch * batch_size * world_size), | ||
time.time() - start_time), | ||
flush=True) | ||
|
||
dev.PrintTimeProfiling() | ||
|
||
|
||
if __name__ == '__main__': | ||
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training | ||
parser = argparse.ArgumentParser( | ||
description='Training using the autograd and graph.') | ||
parser.add_argument( | ||
'model', | ||
choices=['cnn'], | ||
default='cnn') | ||
parser.add_argument('data', | ||
choices=['malaria'], | ||
default='malaria') | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-dir', | ||
'--dir-path', | ||
default="/tmp/malaria", | ||
type=str, | ||
help='the directory to store the malaria dataset', | ||
dest='dir_path') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=100, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
parser.add_argument('-b', | ||
'--batch-size', | ||
default=64, | ||
type=int, | ||
help='batch size', | ||
dest='batch_size') | ||
parser.add_argument('-l', | ||
'--learning-rate', | ||
default=0.005, | ||
type=float, | ||
help='initial learning rate', | ||
dest='lr') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-v', | ||
'--log-verbosity', | ||
default=0, | ||
type=int, | ||
help='logging verbosity', | ||
dest='verbosity') | ||
|
||
args = parser.parse_args() | ||
|
||
sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, | ||
dtype=singa_dtype[args.precision]) | ||
run(0, | ||
1, | ||
args.dir_path, | ||
args.max_epoch, | ||
args.batch_size, | ||
args.model, | ||
args.data, | ||
sgd, | ||
args.graph, | ||
args.verbosity, | ||
precision=args.precision); |