-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1097 from lzjpaul/23-9-15-ms
Training script for model selection
- Loading branch information
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
111 changes: 111 additions & 0 deletions
111
examples/model_selection_psql/ms_mlp/train_multiprocess.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
|
||
from singa import singa_wrap as singa | ||
from singa import opt | ||
from singa import tensor | ||
import argparse | ||
import train_cnn | ||
import multiprocessing | ||
|
||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
def run(args, local_rank, world_size, nccl_id): | ||
sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision]) | ||
sgd = opt.DistOpt(sgd, nccl_id=nccl_id, local_rank=local_rank, world_size=world_size) | ||
train_cnn.run(sgd.global_rank, sgd.world_size, sgd.local_rank, args.max_epoch, | ||
args.batch_size, args.model, args.data, sgd, args.graph, | ||
args.verbosity, args.dist_option, args.spars, args.precision) | ||
|
||
|
||
if __name__ == '__main__': | ||
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training | ||
parser = argparse.ArgumentParser( | ||
description='Training using the autograd and graph.') | ||
parser.add_argument('model', | ||
choices=['resnet', 'xceptionnet', 'cnn', 'mlp'], | ||
default='cnn') | ||
parser.add_argument('data', choices=['cifar10', 'cifar100', 'mnist'], default='mnist') | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=10, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
parser.add_argument('-b', | ||
'--batch-size', | ||
default=64, | ||
type=int, | ||
help='batch size', | ||
dest='batch_size') | ||
parser.add_argument('-l', | ||
'--learning-rate', | ||
default=0.005, | ||
type=float, | ||
help='initial learning rate', | ||
dest='lr') | ||
parser.add_argument('-w', | ||
'--world-size', | ||
default=2, | ||
type=int, | ||
help='number of gpus to be used', | ||
dest='world_size') | ||
parser.add_argument('-d', | ||
'--dist-option', | ||
default='plain', | ||
choices=['plain','half','partialUpdate','sparseTopK','sparseThreshold'], | ||
help='distibuted training options', | ||
dest='dist_option') # currently partialUpdate support graph=False only | ||
parser.add_argument('-s', | ||
'--sparsification', | ||
default='0.05', | ||
type=float, | ||
help='the sparsity parameter used for sparsification, between 0 to 1', | ||
dest='spars') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-v', | ||
'--log-verbosity', | ||
default=0, | ||
type=int, | ||
help='logging verbosity', | ||
dest='verbosity') | ||
|
||
args = parser.parse_args() | ||
|
||
# Generate a NCCL ID to be used for collective communication | ||
nccl_id = singa.NcclIdHolder() | ||
|
||
process = [] | ||
for local_rank in range(0, args.world_size): | ||
process.append( | ||
multiprocessing.Process(target=run, | ||
args=(args, local_rank, args.world_size, nccl_id))) | ||
|
||
for p in process: | ||
p.start() |