Skip to content

Commit

Permalink
Merge pull request #1283 from NLGithubWP/dev-postgresql
Browse files Browse the repository at this point in the history
Add the implementation of the model for cardiovascular disease detection
  • Loading branch information
chrishkchris authored Mar 10, 2025
2 parents 9382aee + df29b2a commit d48701d
Showing 1 changed file with 316 additions and 0 deletions.
316 changes: 316 additions & 0 deletions examples/healthcare/application/Cardiovascular_Disease/train_cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,316 @@
from singa import singa_wrap as singa
from singa import device
from singa import tensor
from singa import opt
import numpy as np
import time
import argparse
from PIL import Image
from healthcare.data import cardiovascular
from healthcare.models import cardiovascular_net

np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}


# Data augmentation
def augmentation(x, batch_size):
xpad = np.pad(x, [[0, 0], [0, 0], [4, 4], [4, 4]], 'symmetric')
for data_num in range(0, batch_size):
offset = np.random.randint(8, size=2)
x[data_num, :, :, :] = xpad[data_num, :,
offset[0]:offset[0] + x.shape[2],
offset[1]:offset[1] + x.shape[2]]
if_flip = np.random.randint(2)
if (if_flip):
x[data_num, :, :, :] = x[data_num, :, :, ::-1]
return x


# Calculate accuracy
def accuracy(pred, target):
# y is network output to be compared with ground truth (int)
y = np.argmax(pred, axis=1)
a = y == target
correct = np.array(a, "int").sum()
return correct


# Data partition according to the rank
def partition(global_rank, world_size, train_x, train_y, val_x, val_y):
# Partition training data
data_per_rank = train_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
train_x = train_x[idx_start:idx_end]
train_y = train_y[idx_start:idx_end]

# Partition evaluation data
data_per_rank = val_x.shape[0] // world_size
idx_start = global_rank * data_per_rank
idx_end = (global_rank + 1) * data_per_rank
val_x = val_x[idx_start:idx_end]
val_y = val_y[idx_start:idx_end]
return train_x, train_y, val_x, val_y


# Function to all reduce NUMPY accuracy and loss from multiple devices
def reduce_variable(variable, dist_opt, reducer):
reducer.copy_from_numpy(variable)
dist_opt.all_reduce(reducer.data)
dist_opt.wait()
output = tensor.to_numpy(reducer)
return output


def resize_dataset(x, image_size):
num_data = x.shape[0]
dim = x.shape[1]
X = np.zeros(shape=(num_data, dim, image_size, image_size),
dtype=np.float32)
for n in range(0, num_data):
for d in range(0, dim):
X[n, d, :, :] = np.array(Image.fromarray(x[n, d, :, :]).resize(
(image_size, image_size), Image.BILINEAR),
dtype=np.float32)
return X


def run(global_rank,
world_size,
local_rank,
max_epoch,
batch_size,
model,
data,
sgd,
graph,
verbosity,
dist_option='plain',
spars=None,
precision='float32'):
#dev = device.get_default_device()
dev = device.create_cuda_gpu_on(local_rank)
# need to change to CPU device for CPU-only machines
dev.SetRandSeed(0)
np.random.seed(0)

if data == 'cifar10':
from data import cifar10
train_x, train_y, val_x, val_y = cifar10.load()
elif data == 'cifar100':
from data import cifar100
train_x, train_y, val_x, val_y = cifar100.load()
elif data == 'mnist':
from data import mnist
train_x, train_y, val_x, val_y = mnist.load()
elif data == 'cardiovascular':
train_x, train_y, val_x, val_y = cardiovascular.load()


num_channels = 1
image_size = 1
data_size = train_x.shape[1]

num_classes = 2

if model == 'resnet':
from model import resnet
model = resnet.resnet50(num_channels=num_channels,
num_classes=num_classes)
elif model == 'xceptionnet':
from model import xceptionnet
model = xceptionnet.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'cnn':
from model import cnn
model = cnn.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'alexnet':
from model import alexnet
model = alexnet.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'mlp':
import os, sys, inspect
current = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe())))
parent = os.path.dirname(current)
sys.path.insert(0, parent)
model = cardiovascular_net.create_model(data_size=data_size, perceptron_size=1000, num_classes=num_classes)

# For distributed training, sequential has better performance
if hasattr(sgd, "communicator"):
DIST = True
sequential = True
else:
DIST = False
sequential = False

if DIST:
train_x, train_y, val_x, val_y = partition(global_rank, world_size,
train_x, train_y, val_x,
val_y)

if model.dimension == 4:
tx = tensor.Tensor(
(batch_size, num_channels, model.input_size, model.input_size), dev,
singa_dtype[precision])
elif model.dimension == 2:
tx = tensor.Tensor((batch_size, data_size), dev, singa_dtype[precision])
# np.reshape(train_x, (train_x.shape[0], -1))
# np.reshape(val_x, (val_x.shape[0], -1))

ty = tensor.Tensor((batch_size,), dev, tensor.int32)
num_train_batch = train_x.shape[0] // batch_size
num_val_batch = val_x.shape[0] // batch_size
idx = np.arange(train_x.shape[0], dtype=np.int32)

# Attach model to graph
model.set_optimizer(sgd)
model.compile([tx], is_train=True, use_graph=graph, sequential=sequential)
dev.SetVerbosity(verbosity)

# Training and evaluation loop
for epoch in range(max_epoch):
start_time = time.time()
np.random.shuffle(idx)

if global_rank == 0:
print('Starting Epoch %d:' % (epoch))


# Training phase
train_correct = np.zeros(shape=[1], dtype=np.float32)
test_correct = np.zeros(shape=[1], dtype=np.float32)
train_loss = np.zeros(shape=[1], dtype=np.float32)

model.train()
for b in range(num_train_batch):
# if b % 100 == 0:
# print ("b: \n", b)
# Generate the patch data in this iteration
x = train_x[idx[b * batch_size:(b + 1) * batch_size]]
if model.dimension == 4:
x = augmentation(x, batch_size)
if (image_size != model.input_size):
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = train_y[idx[b * batch_size:(b + 1) * batch_size]]

# Copy the patch data into input tensors
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)

# Train the model
out, loss = model(tx, ty, dist_option, spars)
train_correct += accuracy(tensor.to_numpy(out), y)
train_loss += tensor.to_numpy(loss)[0]

if DIST:
# Reduce the evaluation accuracy and loss from multiple devices
reducer = tensor.Tensor((1,), dev, tensor.float32)
train_correct = reduce_variable(train_correct, sgd, reducer)
train_loss = reduce_variable(train_loss, sgd, reducer)

if global_rank == 0:
print('Training loss = %f, training accuracy = %f' %
(train_loss, train_correct /
(num_train_batch * batch_size * world_size)),
flush=True)

# Evaluation phase
model.eval()
for b in range(num_val_batch):
x = val_x[b * batch_size:(b + 1) * batch_size]
if model.dimension == 4:
if (image_size != model.input_size):
x = resize_dataset(x, model.input_size)
x = x.astype(np_dtype[precision])
y = val_y[b * batch_size:(b + 1) * batch_size]
tx.copy_from_numpy(x)
ty.copy_from_numpy(y)
out_test = model(tx)
test_correct += accuracy(tensor.to_numpy(out_test), y)

if DIST:
# Reduce the evaulation accuracy from multiple devices
test_correct = reduce_variable(test_correct, sgd, reducer)

# Output the evaluation accuracy
if global_rank == 0:
print('Evaluation accuracy = %f, Elapsed Time = %fs' %
(test_correct / (num_val_batch * batch_size * world_size),
time.time() - start_time),
flush=True)

dev.PrintTimeProfiling()


if __name__ == '__main__':
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training
parser = argparse.ArgumentParser(
description='Training using the autograd and graph.')
parser.add_argument(
'model',
choices=['cnn', 'resnet', 'xceptionnet', 'mlp', 'alexnet'],
default='cnn')
parser.add_argument('data',
choices=['mnist', 'cifar10', 'cifar100', 'cardiovascular'],
default='cardiovascular')
parser.add_argument('-p',
choices=['float32', 'float16'],
default='float32',
dest='precision')
parser.add_argument('-m',
'--max-epoch',
default=100,
type=int,
help='maximum epochs',
dest='max_epoch')
parser.add_argument('-b',
'--batch-size',
default=64,
type=int,
help='batch size',
dest='batch_size')
parser.add_argument('-l',
'--learning-rate',
default=0.001,
type=float,
help='initial learning rate',
dest='lr')
# Determine which gpu to use
parser.add_argument('-i',
'--device-id',
default=0,
type=int,
help='which GPU to use',
dest='device_id')
parser.add_argument('-g',
'--disable-graph',
default='True',
action='store_false',
help='disable graph',
dest='graph')
parser.add_argument('-v',
'--log-verbosity',
default=0,
type=int,
help='logging verbosity',
dest='verbosity')

args = parser.parse_args()

sgd = opt.SGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision])
run(0,
1,
args.device_id,
args.max_epoch,
args.batch_size,
args.model,
args.data,
sgd,
args.graph,
args.verbosity,
precision=args.precision)

0 comments on commit d48701d

Please sign in to comment.