Skip to content

Commit

Permalink
Merge pull request #1216 from lemonviv/native-model-impl
Browse files Browse the repository at this point in the history
Add the implementations of native model
  • Loading branch information
chrishkchris authored Sep 16, 2024
2 parents 1b7bcad + a547dd3 commit d5ddd10
Showing 1 changed file with 135 additions and 0 deletions.
135 changes: 135 additions & 0 deletions examples/msmodel_mlp/native.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from singa import tensor
from singa.tensor import Tensor
from singa import autograd
from singa import opt
import numpy as np
from singa import device
import argparse

np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p',
choices=['float32', 'float16'],
default='float32',
dest='precision')
parser.add_argument('-m',
'--max-epoch',
default=1001,
type=int,
help='maximum epochs',
dest='max_epoch')
args = parser.parse_args()

np.random.seed(0)

autograd.training = True

# prepare training data in numpy array

# generate the boundary
f = lambda x: (5 * x + 1)
bd_x = np.linspace(-1.0, 1, 200)
bd_y = f(bd_x)

# generate the training data
x = np.random.uniform(-1, 1, 400)
y = f(x) + 2 * np.random.randn(len(x))

# convert training data to 2d space
label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)])
data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np.float32)

def to_categorical(y, num_classes):
"""
Converts a class vector (integers) to binary class matrix.
Args:
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
Returns:
A binary matrix representation of the input.
"""
y = np.array(y, dtype="int")
n = y.shape[0]
categorical = np.zeros((n, num_classes))
categorical[np.arange(n), y] = 1
return categorical

label = to_categorical(label, 2).astype(np.float32)
print("train_data_shape:", data.shape)
print("train_label_shape:", label.shape)

precision = singa_dtype[args.precision]
np_precision = np_dtype[args.precision]

dev = device.create_cuda_gpu()

inputs = Tensor(data=data, device=dev)
target = Tensor(data=label, device=dev)

inputs = inputs.as_type(precision)
target = target.as_type(tensor.int32)

w0_np = np.random.normal(0, 0.1, (2, 3)).astype(np_precision)
w0 = Tensor(data=w0_np,
device=dev,
dtype=precision,
requires_grad=True,
stores_grad=True)
b0 = Tensor(shape=(3,),
device=dev,
dtype=precision,
requires_grad=True,
stores_grad=True)
b0.set_value(0.0)

w1_np = np.random.normal(0, 0.1, (3, 2)).astype(np_precision)
w1 = Tensor(data=w1_np,
device=dev,
dtype=precision,
requires_grad=True,
stores_grad=True)
b1 = Tensor(shape=(2,),
device=dev,
dtype=precision,
requires_grad=True,
stores_grad=True)
b1.set_value(0.0)

sgd = opt.SGD(0.05, 0.8)

# training process
for i in range(args.max_epoch):
x = autograd.matmul(inputs, w0)
x = autograd.add_bias(x, b0)
x = autograd.relu(x)
x = autograd.matmul(x, w1)
x = autograd.add_bias(x, b1)
loss = autograd.softmax_cross_entropy(x, target)
sgd(loss)

if i % 100 == 0:
print("%d, training loss = " % i, tensor.to_numpy(loss)[0])

0 comments on commit d5ddd10

Please sign in to comment.