Skip to content

Commit

Permalink
Merge pull request #1171 from GY-GitCode/24-5-19-dev
Browse files Browse the repository at this point in the history
Add the autograd file for multiprocessing
  • Loading branch information
lzjpaul authored May 20, 2024
2 parents af89fe8 + 901fed1 commit e16a203
Showing 1 changed file with 43 additions and 0 deletions.
43 changes: 43 additions & 0 deletions examples/cnn_ms/autograd/cifar10_multiprocess.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from resnet_cifar10 import *
import multiprocessing
import sys

if __name__ == '__main__':

# Generate a NCCL ID to be used for collective communication
nccl_id = singa.NcclIdHolder()

# Configure the number of GPUs to be used
world_size = int(sys.argv[1])

# Testing the experimental partial-parameter update asynchronous training
partial_update = True

process = []
for local_rank in range(0, world_size):
process.append(
multiprocessing.Process(target=train_cifar10,
args=(True, local_rank, world_size, nccl_id,
partial_update)))

for p in process:
p.start()

0 comments on commit e16a203

Please sign in to comment.