-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[YUNIKORN-1502] Chinese translation of Run NVIDIA GPU Jobs in workload (
#340)
- Loading branch information
Showing
1 changed file
with
347 additions
and
0 deletions.
There are no files selected for viewing
347 changes: 347 additions & 0 deletions
347
...zh-cn/docusaurus-plugin-content-docs/current/user_guide/workloads/run_nvidia.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,347 @@ | ||
--- | ||
id: run_nvidia | ||
title: 运行NVIDIA GPU作业 | ||
description: 如何使用Yunikorn运行通用的GPU调度示例 | ||
keywords: | ||
- NVIDIA GPU | ||
--- | ||
|
||
<!-- | ||
Licensed to the Apache Software Foundation (ASF) under one | ||
or more contributor license agreements. See the NOTICE file | ||
distributed with this work for additional information | ||
regarding copyright ownership. The ASF licenses this file | ||
to you under the Apache License, Version 2.0 (the | ||
"License"); you may not use this file except in compliance | ||
with the License. You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, | ||
software distributed under the License is distributed on an | ||
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
KIND, either express or implied. See the License for the | ||
specific language governing permissions and limitations | ||
under the License. | ||
--> | ||
|
||
## Yunikorn 与 NVIDIA GPUs | ||
本指南概述了如何设置NVIDIA设备插件,该插件使用户可以在Yunikorn上运行GPU。如需更详细信息,请查看 [**使用GPU的Kubernetes**](https://docs.nvidia.com/datacenter/cloud-native/kubernetes/install-k8s.html#option-2-installing-kubernetes-using-kubeadm)。 | ||
|
||
### 先决条件 | ||
在按照以下步骤之前,需要在 [**设置GPU的Kubernetes**](https://docs.nvidia.com/datacenter/cloud-native/kubernetes/install-k8s.html#install-kubernetes)上部署Yunikorn。 | ||
|
||
### 安装NVIDIA设备插件 | ||
添加nvidia-device-plugin Helm存储库。 | ||
``` | ||
helm repo add nvdp https://nvidia.github.io/k8s-device-plugin | ||
helm repo update | ||
helm repo list | ||
``` | ||
|
||
验证插件的最新发布版本是否可用。 | ||
``` | ||
helm search repo nvdp --devel | ||
NAME CHART VERSION APP VERSION DESCRIPTION | ||
nvdp/nvidia-device-plugin 0.12.3 0.12.3 A Helm chart for ... | ||
``` | ||
|
||
部署设备插件。 | ||
``` | ||
kubectl create namespace nvidia | ||
helm install --generate-name nvdp/nvidia-device-plugin --namespace nvidia --version 0.12.3 | ||
``` | ||
|
||
检查Pod的状态以确保NVIDIA设备插件正在运行。 | ||
``` | ||
kubectl get pods -A | ||
NAMESPACE NAME READY STATUS RESTARTS AGE | ||
kube-flannel kube-flannel-ds-j24fx 1/1 Running 1 (11h ago) 11h | ||
kube-system coredns-78fcd69978-2x9l8 1/1 Running 1 (11h ago) 11h | ||
kube-system coredns-78fcd69978-gszrw 1/1 Running 1 (11h ago) 11h | ||
kube-system etcd-katlantyss-nzxt 1/1 Running 3 (11h ago) 11h | ||
kube-system kube-apiserver-katlantyss-nzxt 1/1 Running 4 (11h ago) 11h | ||
kube-system kube-controller-manager-katlantyss-nzxt 1/1 Running 3 (11h ago) 11h | ||
kube-system kube-proxy-4wz7r 1/1 Running 1 (11h ago) 11h | ||
kube-system kube-scheduler-katlantyss-nzxt 1/1 Running 4 (11h ago) 11h | ||
kube-system nvidia-device-plugin-1659451060-c92sb 1/1 Running 1 (11h ago) 11h | ||
``` | ||
|
||
### 测试NVIDIA设备插件 | ||
创建一个GPU测试的YAML文件。 | ||
``` | ||
# gpu-pod.yaml | ||
apiVersion: v1 | ||
kind: Pod | ||
metadata: | ||
name: gpu-operator-test | ||
spec: | ||
restartPolicy: OnFailure | ||
containers: | ||
- name: cuda-vector-add | ||
image: "nvidia/samples:vectoradd-cuda10.2" | ||
resources: | ||
limits: | ||
nvidia.com/gpu: 1 | ||
``` | ||
部署应用程序。 | ||
``` | ||
kubectl apply -f gpu-pod.yaml | ||
``` | ||
检查日志以确保应用程序成功完成。 | ||
``` | ||
kubectl get pods gpu-operator-test | ||
NAME READY STATUS RESTARTS AGE | ||
gpu-operator-test 0/1 Completed 0 9d | ||
``` | ||
检查结果。 | ||
``` | ||
kubectl logs gpu-operator-test | ||
[Vector addition of 50000 elements] | ||
Copy input data from the host memory to the CUDA device | ||
CUDA kernel launch with 196 blocks of 256 threads | ||
Copy output data from the CUDA device to the host memory | ||
Test PASSED | ||
Done | ||
``` | ||
|
||
--- | ||
## 启用GPU时间切片( 可选 ) | ||
GPU时间分片允许多租户共享单个GPU。 | ||
要了解GPU时间分片的工作原理,请参阅[**在Kubernetes中使用GPU的时间切片**](https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/gpu-sharing.html#introduction)。此页面介绍了使用 [**NVIDIA GPU Operator**](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/gpu-operator)启用Yunikorn中GPU调度的方法。 | ||
|
||
|
||
### 配置 | ||
以下示例说明在ConfigMap中指定多个配置。 | ||
```yaml | ||
# time-slicing-config.yaml | ||
apiVersion: v1 | ||
kind: ConfigMap | ||
metadata: | ||
name: time-slicing-config | ||
namespace: nvidia | ||
data: | ||
a100-40gb: |- | ||
version: v1 | ||
sharing: | ||
timeSlicing: | ||
resources: | ||
- name: nvidia.com/gpu | ||
replicas: 8 | ||
- name: nvidia.com/mig-1g.5gb | ||
replicas: 2 | ||
- name: nvidia.com/mig-2g.10gb | ||
replicas: 2 | ||
- name: nvidia.com/mig-3g.20gb | ||
replicas: 3 | ||
- name: nvidia.com/mig-7g.40gb | ||
replicas: 7 | ||
rtx-3070: |- | ||
version: v1 | ||
sharing: | ||
timeSlicing: | ||
resources: | ||
- name: nvidia.com/gpu | ||
replicas: 8 | ||
``` | ||
:::note | ||
如果节点上的GPU类型不包括a100-40gb或rtx-3070,您可以根据现有的GPU类型修改YAML文件。例如,在本地Kubernetes集群中只有多个rtx-2080ti,而rtx-2080ti不支持MIG,因此无法替代a100-40gb。但rtx-2080ti支持时间切片,因此可以替代rtx-3070。 | ||
::: | ||
:::info | ||
MIG支持于2020年添加到Kubernetes中。有关其工作原理的详细信息,请参阅 [**在Kubernetes中支援MIG**](https://www.google.com/url?q=https://docs.google.com/document/d/1mdgMQ8g7WmaI_XVVRrCvHPFPOMCm5LQD5JefgAh6N8g/edit&sa=D&source=editors&ust=1655578433019961&usg=AOvVaw1F-OezvM-Svwr1lLsdQmu3) 。 | ||
::: | ||
在operator命名空间nvidia,创建一个ConfigMap。 | ||
```bash | ||
kubectl create namespace nvidia | ||
kubectl create -f time-slicing-config.yaml | ||
``` | ||
|
||
### 安装NVIDIA GPU Operator | ||
添加nvidia-gpu-operator Helm存储库。 | ||
```bash | ||
helm repo add nvidia https://helm.ngc.nvidia.com/nvidia | ||
helm repo update | ||
helm repo list | ||
``` | ||
|
||
|
||
使用NVIDIA GPU Operator启用共享GPU。 | ||
- 在启用时间切片的情况下首次安装NVIDIA GPU Operator。 | ||
```bash | ||
helm install gpu-operator nvidia/gpu-operator \ | ||
-n nvidia \ | ||
--set devicePlugin.config.name=time-slicing-config | ||
``` | ||
|
||
- 对于已安装GPU Operator的情况下,动态启用时间切片。 | ||
```bash | ||
kubectl patch clusterpolicy/cluster-policy \ | ||
-n nvidia --type merge \ | ||
-p '{"spec": {"devicePlugin": {"config": {"name": "time-slicing-config"}}}}' | ||
``` | ||
|
||
### 应用时间分片配置 | ||
有两种方法: | ||
- 集群范围 | ||
|
||
通过传递时间分片ConfigMap名称和默认配置来安装GPU Operator。 | ||
```bash | ||
kubectl patch clusterpolicy/cluster-policy \ | ||
-n nvidia --type merge \ | ||
-p '{"spec": {"devicePlugin": {"config": {"name": "time-slicing-config", "default": "rtx-3070"}}}}' | ||
``` | ||
|
||
- 在特定节点上 | ||
|
||
使用ConfigMap中所需的时间切片配置对节点进行标记。 | ||
```bash | ||
kubectl label node <node-name> nvidia.com/device-plugin.config=rtx-3070 | ||
``` | ||
|
||
|
||
一旦安装了GPU Operator和时间切片GPU,检查Pod的状态以确保所有容器都在运行,并且验证已完成。 | ||
```bash | ||
kubectl get pods -n nvidia | ||
``` | ||
|
||
```bash | ||
NAME READY STATUS RESTARTS AGE | ||
gpu-feature-discovery-qbslx 2/2 Running 0 20h | ||
gpu-operator-7bdd8bf555-7clgv 1/1 Running 0 20h | ||
gpu-operator-node-feature-discovery-master-59b4b67f4f-q84zn 1/1 Running 0 20h | ||
gpu-operator-node-feature-discovery-worker-n58dv 1/1 Running 0 20h | ||
nvidia-container-toolkit-daemonset-8gv44 1/1 Running 0 20h | ||
nvidia-cuda-validator-tstpk 0/1 Completed 0 20h | ||
nvidia-dcgm-exporter-pgk7v 1/1 Running 1 20h | ||
nvidia-device-plugin-daemonset-w8hh4 2/2 Running 0 20h | ||
nvidia-device-plugin-validator-qrpxx 0/1 Completed 0 20h | ||
nvidia-operator-validator-htp6b 1/1 Running 0 20h | ||
``` | ||
验证时间分片配置是否成功应用。 | ||
```bash | ||
kubectl describe node <node-name> | ||
``` | ||
|
||
```bash | ||
... | ||
Capacity: | ||
nvidia.com/gpu: 8 | ||
... | ||
Allocatable: | ||
nvidia.com/gpu: 8 | ||
... | ||
``` | ||
|
||
### 测试GPU时间切片 | ||
创建一个工作负载测试文件 plugin-test.yaml。 | ||
```yaml | ||
# plugin-test.yaml | ||
apiVersion: apps/v1 | ||
kind: Deployment | ||
metadata: | ||
name: nvidia-plugin-test | ||
labels: | ||
app: nvidia-plugin-test | ||
spec: | ||
replicas: 5 | ||
selector: | ||
matchLabels: | ||
app: nvidia-plugin-test | ||
template: | ||
metadata: | ||
labels: | ||
app: nvidia-plugin-test | ||
spec: | ||
tolerations: | ||
- key: nvidia.com/gpu | ||
operator: Exists | ||
effect: NoSchedule | ||
containers: | ||
- name: dcgmproftester11 | ||
image: nvidia/samples:dcgmproftester-2.1.7-cuda11.2.2-ubuntu20.04 | ||
command: ["/bin/sh", "-c"] | ||
args: | ||
- while true; do /usr/bin/dcgmproftester11 --no-dcgm-validation -t 1004 -d 300; sleep 30; done | ||
resources: | ||
limits: | ||
nvidia.com/gpu: 1 | ||
securityContext: | ||
capabilities: | ||
add: ["SYS_ADMIN"] | ||
``` | ||
创建一个具有多个副本的部署。 | ||
```bash | ||
kubectl apply -f plugin-test.yaml | ||
``` | ||
|
||
验证所有五个副本是否正在运行。 | ||
|
||
- 在Pod群中 | ||
```bash | ||
kubectl get pods | ||
``` | ||
|
||
```bash | ||
NAME READY STATUS RESTARTS AGE | ||
nvidia-plugin-test-677775d6c5-bpsvn 1/1 Running 0 8m8s | ||
nvidia-plugin-test-677775d6c5-m95zm 1/1 Running 0 8m8s | ||
nvidia-plugin-test-677775d6c5-9kgzg 1/1 Running 0 8m8s | ||
nvidia-plugin-test-677775d6c5-lrl2c 1/1 Running 0 8m8s | ||
nvidia-plugin-test-677775d6c5-9r2pz 1/1 Running 0 8m8s | ||
``` | ||
- 在节点中 | ||
```bash | ||
kubectl describe node <node-name> | ||
``` | ||
|
||
```bash | ||
... | ||
Allocated resources: | ||
(Total limits may be over 100 percent, i.e., overcommitted.) | ||
Resource Requests Limits | ||
-------- -------- ------ | ||
... | ||
nvidia.com/gpu 5 5 | ||
... | ||
``` | ||
- 在NVIDIA系统管理界面中 | ||
```bash | ||
nvidia-smi | ||
``` | ||
|
||
```bash | ||
+-----------------------------------------------------------------------------+ | ||
| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 | | ||
|-------------------------------+----------------------+----------------------+ | ||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | ||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | ||
| | | MIG M. | | ||
|===============================+======================+======================| | ||
| 0 NVIDIA GeForce ... On | 00000000:01:00.0 On | N/A | | ||
| 46% 86C P2 214W / 220W | 4297MiB / 8192MiB | 100% Default | | ||
| | | N/A | | ||
+-------------------------------+----------------------+----------------------+ | ||
|
||
+-----------------------------------------------------------------------------+ | ||
| Processes: | | ||
| GPU GI CI PID Type Process name GPU Memory | | ||
| ID ID Usage | | ||
|=============================================================================| | ||
| 0 N/A N/A 1776886 C /usr/bin/dcgmproftester11 764MiB | | ||
| 0 N/A N/A 1776921 C /usr/bin/dcgmproftester11 764MiB | | ||
| 0 N/A N/A 1776937 C /usr/bin/dcgmproftester11 764MiB | | ||
| 0 N/A N/A 1777068 C /usr/bin/dcgmproftester11 764MiB | | ||
| 0 N/A N/A 1777079 C /usr/bin/dcgmproftester11 764MiB | | ||
+-----------------------------------------------------------------------------+ | ||
``` | ||
|
||
- 在Yunikorn用户界面中的应用程序中。 | ||
![](../../assets/yunikorn-gpu-time-slicing.png) |