Skip to content

Commit

Permalink
Revisions according to review remarks
Browse files Browse the repository at this point in the history
* revision of headers of sections about group sums
* ~lidridbid replaced by ~lidrideqd and ~lidrididd
* comment of ~gsumfsupp revised
* monoid replaced by magma in comments
  • Loading branch information
avekens committed Dec 30, 2023
1 parent 1d6e6ea commit 10ae49f
Showing 1 changed file with 39 additions and 31 deletions.
70 changes: 39 additions & 31 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -214990,7 +214990,7 @@ is an important property of monoids (see ~ mndid ), and therefore also for

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Group sum operation for magmas
Group sum operation in magmas
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

The symbol ` gsum ` is mostly used in the context of abelian groups.
Expand Down Expand Up @@ -216933,7 +216933,7 @@ proposition to be be proved (the first four hypotheses tell its values

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Group sum operation for monoids
Group sum operation in monoids
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

One important use of words is as formal composites in cases where order is
Expand Down Expand Up @@ -735203,29 +735203,37 @@ their group (addition) operations are equal for all pairs of elements of
$}

${
$d B x y $. $d L x y $. $d R x y $. $d G y $. $d .+ x y $. $d .0. y $.
lidridid.b $e |- B = ( Base ` G ) $.
lidridid.p $e |- .+ = ( +g ` G ) $.
lidridid.o $e |- .0. = ( 0g ` G ) $.
$( If a magma has a left and right identity element, both identity elements
are equal and are equal to "the" identity element. Generalization of
statement in [Lang] p. 3: it is sufficient that "e" is a left identity
element and "e``" is a right identity element instead of both being
(two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) $)
lidridid $p |- ( ( L e. B /\ R e. B )
-> ( A. x e. B ( ( L .+ x ) = x /\ ( x .+ R ) = x )
-> ( L = R /\ L = .0. ) ) ) $=
( vy co wceq wa wral wcel wi oveq2 eqeq12d rspcv cv r19.26 id oveq1 eqtr2
w3a adantl ex syl6 adantr com23 syld simpr simpl1l weq com12 3ad2ant2 imp
3imp eqcoms eqeq1d biimpcd com3l 3ad2ant3 imp31 ismgmid2 jca mpdan 3expib
syl5bi ) FAUAZCLZVKMZVKDCLZVKMZNABOVMABOZVOABOZNFBPZDBPZNZFDMZFGMZNZVMVOA
BUBVTVPVQWCVTVPVQUFZWAWCVTVPVQWAVTVPFDCLZDMZVQWAQVSVPWFQVRVMWFADBVKDMZVLW
EVKDVKDFCRWGUCSTUGVTVQWFWAVRVQWFWAQZQVSVRVQWEFMZWHVOWIAFBVKFMZVNWEVKFVKFD
CUDWJUCSTWIWFWAWEFDUEUHUIUJUKULUSWDWANZWAWBWDWAUMWKKBCFEGHJIVRVSVPVQWAUNW
KKUAZBPZFWLCLZWLMZWDWMWOQZWAVPVTWPVQWMVPWOVMWOAWLBAKUOZVLWNVKWLVKWLFCRWQU
CZSTUPUQUJURWDWAWMWLFCLZWLMZVQVTWAWMWTQQVPWMVQWAWTWMVQWLDCLZWLMZWAWTQVOXB
AWLBWQVNXAVKWLVKWLDCUDWRSTWAXBWTWAXAWSWLXAWSMDFDFWLCRUTVAVBUIVCVDVEVFVGVH
VIVJ $.
$d B x $. $d L x $. $d R x $. $d .+ x $.
lidrideqd.l $e |- ( ph -> L e. B ) $.
lidrideqd.r $e |- ( ph -> R e. B ) $.
lidrideqd.li $e |- ( ph -> A. x e. B ( L .+ x ) = x ) $.
lidrideqd.ri $e |- ( ph -> A. x e. B ( x .+ R ) = x ) $.
$( If there is a left and right identity element for any binary operation
(group operation) ` .+ ` , both identity elements are equal.
Generalization of statement in [Lang] p. 3: it is sufficient that "e" is
a left identity element and "e``" is a right identity element instead of
both being (two-sided) identity elements. (Contributed by AV,
26-Dec-2023.) $)
lidrideqd $p |- ( ph -> L = R ) $=
( co cv wceq oveq1 id eqeq12d rspcdva oveq2 eqtr3d ) AFEDKZFEABLZEDKZUAMT
FMBCFUAFMZUBTUAFUAFEDNUCOPJGQAFUADKZUAMTEMBCEUAEMZUDTUAEUAEFDRUEOPIHQS $.

$d B x y $. $d L y $. $d R y $. $d G y $. $d .+ y $. $d .0. y $.
$d ph y $.
lidrideqd.b $e |- B = ( Base ` G ) $.
lidrideqd.p $e |- .+ = ( +g ` G ) $.
lidrididd.o $e |- .0. = ( 0g ` G ) $.
$( If there is a left and right identity element for any binary operation
(group operation) ` .+ ` , the left identity element (and therefore also
the right identity element according to ~ lidrideqd ) is equal to the
two-sided identity element. (Contributed by AV, 26-Dec-2023.) $)
lidrididd $p |- ( ph -> L = .0. ) $=
( vy cv co wceq wral wcel oveq2 id eqeq12d rspcv mpan9 wi lidrideqd oveq1
weq wa adantl simpl eqtrd ex syl6com com23 sylc imp ismgmid2 ) APCDGFHMON
IAGBQZDRZVASZBCTPQZCUAZGVDDRZVDSZKVCVGBVDCBPUJZVBVFVAVDVAVDGDUBVHUCZUDUEU
FAVEVDGDRZVDSZAVAEDRZVASZBCTZGESZVEVKUGLABCDEGIJKLUHVNVEVOVKVEVNVDEDRZVDS
ZVOVKUGVMVQBVDCVHVLVPVAVDVAVDEDUIVIUDUEVQVOVKVQVOUKVJVPVDVOVJVPSVQGEVDDUB
ULVQVOUMUNUOUPUQURUSUT $.
$}

${
Expand Down Expand Up @@ -736040,10 +736048,10 @@ Group sum operation (extension 1)
gsumfsupp.a $e |- ( ph -> A e. V ) $.
gsumfsupp.f $e |- ( ph -> F : A --> B ) $.
gsumfsupp.w $e |- ( ph -> F finSupp .0. ) $.
$( A group sum is identical with the group sum restricted to the finite
support of its index set. This corresponds to the definition of an
(infinite) product in [Lang] p. 5, two last formulas. (Contributed by
AV, 27-Dec-2023.) $)
$( A group sum of a family can be restricted to the support of that family
without changing its value, provided that that support is finite. This
corresponds to the definition of an (infinite) product in [Lang] p. 5,
last two formulas. (Contributed by AV, 27-Dec-2023.) $)
gsumfsupp $p |- ( ph -> ( G gsum ( F |` I ) ) = ( G gsum F ) ) $=
( csupp co wss eqimss2i a1i gsumres ) ABCDEGFHIJLMNDHPQZFRAFUBKSTOUA $.
$}
Expand Down Expand Up @@ -736118,15 +736126,15 @@ Group multiple operation (extension) and cyclic monoids
cycsubm.f $e |- F = ( x e. NN0 |-> ( x .x. A ) ) $.
cycsubm.c $e |- C = ran F $.
$( Characterization of an element of the set of nonnegative integer powers
of an element ` A ` of a monoid. (Contributed by AV, 28-Dec-2023.) $)
of an element ` A ` of a magma. (Contributed by AV, 28-Dec-2023.) $)
cycsubmel $p |- ( X e. C <-> E. i e. NN0 X = ( i .x. A ) ) $=
( wcel cv wceq cn0 wrex co ovex crn cfv eleq2i wfn wb fvelrnb ax-mp oveq1
fnmpti fvmpt eqeq1d eqcom syl6bb rexbiia 3bitri ) IDNIGUAZNZFOZGUBZIPZFQR
ZIURBESZPZFQRDUPIMUCGQUDUQVAUEAQAOZBESZGVDBETLUIFQIGUFUGUTVCFQURQNZUTVBIP
VCVFUSVBIAURVEVBQGVDURBEUHLURBETUJUKVBIULUMUNUO $.

$d A i $. $d B i $. $d .x. i $.
$( The set of nonnegative integer powers of an element ` A ` of a monoid
$( The set of nonnegative integer powers of an element ` A ` of a magma
contains ` A ` . (Contributed by AV, 28-Dec-2023.) $)
cycsubmcl $p |- ( A e. B -> A e. C ) $=
( vi wcel cv co wceq cn0 wrex c1 1nn0 wb oveq1 eqeq2d adantl mulg1 eqcomd
Expand Down

0 comments on commit 10ae49f

Please sign in to comment.