Skip to content

Commit

Permalink
Theorems for Godel-sets (4a) - rewrap
Browse files Browse the repository at this point in the history
* theorems for ` ( M SatE U ) ` added: ~satefv, ~satef, ~sate0fv0, ~satefvfmla0
* exaples for simple wff codes added: ~sategoelfvb, ~sategoelfv, ~sategoelelxmpl, ~sategoelxmpl
* theorem for ` M |= U ` added: ~prv
  • Loading branch information
avekens committed Nov 5, 2023
1 parent 385a588 commit 472ed58
Showing 1 changed file with 25 additions and 25 deletions.
50 changes: 25 additions & 25 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -71646,7 +71646,7 @@ Axiom of Replacement (unlike ~ resfunexg ). (Contributed by NM,
(Contributed by AV, 6-Oct-2023.) $)
fiunlem $p |- ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) )
/\ u = B ) -> A. v e. { z | E. x e. A z = B }
( u C_ v \/ v C_ u ) ) $=
( u C_ v \/ v C_ u ) ) $=
( wss wo wa cv wceq wrex weq sseq12 sylan2b wf wral cab vex eqeq1 rexbidv
wcel elab eqeq2d cbvrexv r19.29 ancoms orbi12d biimprcd expdimp rexlimivw
wi wb imp sylan an32s adantlll ralrimiva ) IJGUAZGHLZHGLZMZBFUBZNEOZGPZNZ
Expand All @@ -71661,7 +71661,7 @@ Axiom of Replacement (unlike ~ resfunexg ). (Contributed by NM,
function. Analogous to ~ fun11iun . (Contributed by AV,
6-Oct-2023.) $)
fiun $p |- ( A. x e. A ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) )
-> U_ x e. A B : U_ x e. A D --> S ) $=
-> U_ x e. A B : U_ x e. A D --> S ) $=
( vz vu vv wss wral wa ciun wfun cv wrex wcel wf wo wfn crn cdm wceq cuni
cab vex weq eqeq1 rexbidv elab r19.29 nfv nfre1 nfab nfral nfan wi adantr
ffun wb funeq adantl mpbird adantlr fiunlem jca a1i rexlimi syl ralrimiva
Expand Down Expand Up @@ -71706,11 +71706,11 @@ Axiom of Replacement (unlike ~ resfunexg ). (Contributed by NM,

${
$d F i $. $d I i $. $d J i $.
fviun.s $e |- U = U_ i e. I ( F ` i ) $.
fviunfun.u $e |- U = U_ i e. I ( F ` i ) $.
$( The function value of an indexed union is the value of one of the
indexed functions. (Contributed by AV, 4-Novt-2023.) $)
indexed functions. (Contributed by AV, 4-Nov-2023.) $)
fviunfun $p |- ( ( Fun U /\ J e. I /\ X e. dom ( F ` J ) )
-> ( U_ i e. I ( F ` i ) ` X ) = ( ( F ` J ) ` X ) ) $=
-> ( U_ i e. I ( F ` i ) ` X ) = ( ( F ` J ) ` X ) ) $=
( wfun wcel cfv cdm w3a cv ciun wss wceq funeqi biimpi 3ad2ant1 fveq2
ssiun2s 3ad2ant2 simp3 funssfv syl3anc ) AHZEDIZFECJZKIZLBDBMZCJZNZHZUHUL
OZUIFULJFUHJPUFUGUMUIUFUMAULGQRSUGUFUNUIBDUKEUHUJECTUAUBUFUGUIUCFULUHUDUE
Expand Down Expand Up @@ -506894,7 +506894,7 @@ codes is an increasing chain (with respect to inclusion). (Contributed
${
$d E x y $. $d M x y $. $d V x y $. $d W x y $.
$( The satisfaction predicate as function over wff codes in the model ` M `
and the binary relation ` E ` on ` M `. (Contributed by AV,
and the binary relation ` E ` on ` M ` . (Contributed by AV,
29-Oct-2023.) $)
satfun $p |- ( ( M e. V /\ E e. W )
-> ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) $=
Expand All @@ -506918,14 +506918,14 @@ codes is an increasing chain (with respect to inclusion). (Contributed
code ` U ` for a wff using ` e. , -/\ , A. ` is a valuation
` S : _om --> M ` of the variables (v_0 ` = ( S `` (/) ) ` , v_1
` = ( S `` 1o ) ` , etc.) so that ` U ` is true under the assignment
` S ` . (Contributed by AV, 29-Oct-2023.) $)
satfvel $p |- ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om )
` S ` . (Contributed by AV, 29-Oct-2023.) $)
satfvel $p |- ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om )
/\ S e. ( ( ( M Sat E ) ` _om ) ` U ) )
-> S : _om --> M ) $=
( wcel wa com cfmla cfv csat co wf cmap cpw wi satfun ffvelrn syl fvex ex
wss elpw ssel elmapi syl6 sylbi 3imp ) DEGCFGHZBIJKZGZABIDCLMKZKZGZIDANZU
JUKDIOMZPZUMNZULUOUPQZQCDEFRUSULUTUSULHUNURGZUTUKURBUMSVAUNUQUCZUTUNUQBUM
UAUDVBUOAUQGUPUNUQAUEADIUFUGUHTUBTUI $.
( wcel wa com cfmla cfv csat co wf cmap cpw wi satfun ffvelrn syl fvex elpw
wss ssel elmapi syl6 sylbi ex 3imp ) DEGCFGHZBIJKZGZABIDCLMKZKZGZIDANZUJUKD
IOMZPZUMNZULUOUPQZQCDEFRUSULUTUSULHUNURGZUTUKURBUMSVAUNUQUCZUTUNUQBUMUAUBVB
UOAUQGUPUNUQAUDADIUEUFUGTUHTUI $.

${
$d E a i j x y $. $d M a i j x y $. $d X a i j x y $.
Expand Down Expand Up @@ -506963,24 +506963,24 @@ codes is an increasing chain (with respect to inclusion). (Contributed
model ` M ` at the code ` U ` . (Contributed by AV, 30-Oct-2023.) $)
satefv $p |- ( ( M e. V /\ U e. W ) -> ( M SatE U )
= ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) $=
( vm vu wcel wa cvv cv com cep cxp cin csat co cfv csate wceq adantr a1i id
cmpo df-sate sqxpeqd ineq2d oveq12d fveq1d simpr fveq12d adantl elex ovmpod
fvexd ) BCGZADGZHZEFBAIIFJZKEJZLUSUSMZNZOPZQZQZAKBLBBMZNZOPZQZQZRIREFIIVDUC
SUQFEUDUAUSBSZURASZHZVDVISUQVLURAVCVHVJVCVHSVKVJKVBVGVJUSBVAVFOVJUBZVJUTVEL
VJUSBVMUEUFUGUHTVJVKUIUJUKUOBIGUPBCULTUPAIGUOADULUKUQAVHUNUM $.
( vm vu wcel wa cvv cv com cep cxp cin csat co cfv csate wceq adantr cmpo
df-sate a1i sqxpeqd ineq2d oveq12d fveq1d simpr fveq12d adantl elex fvexd
id ovmpod ) BCGZADGZHZEFBAIIFJZKEJZLUSUSMZNZOPZQZQZAKBLBBMZNZOPZQZQZRIREF
IIVDUASUQFEUBUCUSBSZURASZHZVDVISUQVLURAVCVHVJVCVHSVKVJKVBVGVJUSBVAVFOVJUM
ZVJUTVELVJUSBVMUDUEUFUGTVJVKUHUIUJUOBIGUPBCUKTUPAIGUOADUKUJUQAVHULUN $.
$}

$( The simplified satisfaction predicate for any wff code over an empty
model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) $)
sate0 $p |- ( U e. V -> ( (/) SatE U )
= ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) $=
( wcel csate com cep cxp cin csat cfv cvv wceq 0ex satefv mpan xp0 ineq2i
c0 co fveq1i in0 eqtri oveq2i syl6eq ) ABCZRADSZAERFRRGZHZISZJZJZAERRISZJ
ZJRKCUEUFUKLMARKBNOAUJUMEUIULUHRRIUHFRHRUGRFRPQFUAUBUCTTUD $.
( wcel c0 csate co com cep cxp cin csat cfv cvv wceq 0ex satefv mpan ineq2i
xp0 fveq1i in0 eqtri oveq2i syl6eq ) ABCZDAEFZAGDHDDIZJZKFZLZLZAGDDKFZLZLDM
CUEUFUKNOADMBPQAUJUMGUIULUHDDKUHHDJDUGDHDSRHUAUBUCTTUD $.

$( The simplified satisfaction predicate as function over wff codes over an
empty model. (Contributed by AV, 30-Oct-2023.) $)
satef $p |- ( ( M e. V /\ U e. ( Fmla ` _om ) /\ S e. ( M SatE U ) )
satef $p |- ( ( M e. V /\ U e. ( Fmla ` _om ) /\ S e. ( M SatE U ) )
-> S : _om --> M ) $=
( wcel com cfmla cfv csate co w3a cep cxp cin cvv wa csat adantr syl simpr
wf satefv eleq2d simpl incom sqxpexg inex1g syl5eqel jca 3jca sylbid 3impia
Expand Down Expand Up @@ -507051,9 +507051,9 @@ codes is an increasing chain (with respect to inclusion). (Contributed
KWEVMWDTVRUQWFWG $.

$( Condition of a valuation ` S ` of a simplyfied satisfaction predicate
for a Godel-set of membership: The sets in model ` M ` corresponding to
for a Godel-set of membership: The sets in model ` M ` corresponding to
the variables ` A ` and ` B ` under the assignment of ` S ` are in a
membership relation in ` M `. (Contributed by AV, 5-Nov-2023.) $)
membership relation in ` M ` . (Contributed by AV, 5-Nov-2023.) $)
sategoelfv $p |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) /\ S e. E )
-> ( S ` A ) e. ( S ` B ) ) $=
( wcel com wa cfv cmap co sategoelfvb simpr syl6bi 3impia ) EFHZAIHBIHJZC
Expand All @@ -507063,7 +507063,7 @@ codes is an increasing chain (with respect to inclusion). (Contributed
sategoelelxmpl.s $e |- S = ( x e. _om
|-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) $.
$( Example of a valuation of a simplyfied satisfaction predicate for a
Godel-set of membership. (Contributed by AV, 5-Nov-2023.) $)
Godel-set of membership. (Contributed by AV, 5-Nov-2023.) $)
sategoelelxmpl $p |- ( ( ( M e. WUni /\ Z e. M )
/\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S e. E ) $=
( cwun wcel wa com wceq c0 cif ifcld adantr cvv adantl wne w3a cmap co wf
Expand All @@ -507080,7 +507080,7 @@ codes is an increasing chain (with respect to inclusion). (Contributed
XDWFWGWHVQBCDEFJHVRVSWB $.

$( Instance of ~ sategoelfv for the example of a valuation of a simplyfied
satisfaction predicate for a Godel-set of membership. (Contributed by
satisfaction predicate for a Godel-set of membership. (Contributed by
AV, 5-Nov-2023.) $)
sategoelxmpl $p |- ( ( ( M e. WUni /\ Z e. M )
/\ ( A e. _om /\ B e. _om /\ A =/= B ) )
Expand Down

0 comments on commit 472ed58

Please sign in to comment.