Skip to content

Commit

Permalink
Submonoids of injectiv/surjective endofunctions
Browse files Browse the repository at this point in the history
~sursubmefmnd and ~injsubmefmnd  as proposed by Gérard Lang, allowing for a a shorter proof of ~symgsubmefmnd, also proposed by Gérard Lang (~insubm required).
  • Loading branch information
avekens committed Feb 25, 2024
1 parent 1c9692e commit ca97d9e
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 0 deletions.
2 changes: 2 additions & 0 deletions discouraged
Original file line number Diff line number Diff line change
Expand Up @@ -17612,6 +17612,7 @@ New usage of "supsrlem" is discouraged (1 uses).
New usage of "swrdnznd" is discouraged (1 uses).
New usage of "syl5imp" is discouraged (0 uses).
New usage of "syl5impVD" is discouraged (0 uses).
New usage of "symgsubmefmndALT" is discouraged (0 uses).
New usage of "tarski-bernays-ax2" is discouraged (0 uses).
New usage of "tb-ax1" is discouraged (3 uses).
New usage of "tb-ax2" is discouraged (1 uses).
Expand Down Expand Up @@ -19351,6 +19352,7 @@ Proof modification of "suctrALTcfVD" is discouraged (164 steps).
Proof modification of "supp0cosupp0OLD" is discouraged (176 steps).
Proof modification of "syl5imp" is discouraged (23 steps).
Proof modification of "syl5impVD" is discouraged (57 steps).
Proof modification of "symgsubmefmndALT" is discouraged (199 steps).
Proof modification of "symrefref3" is discouraged (75 steps).
Proof modification of "tarski-bernays-ax2" is discouraged (557 steps).
Proof modification of "tb-ax1" is discouraged (4 steps).
Expand Down
73 changes: 73 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -218589,6 +218589,28 @@ everywhere defined internal operation (see ~ mndcl ), whose operation is
DEVBVFVAABVICVSURUS $.
$}

${
$d A a b x y $. $d B a b x y $. $d M a b x y $.
$( The intersection of two submonoids is a submonoid. (Contributed by AV,
25-Feb-2024.) $)
insubm $p |- ( ( A e. ( SubMnd ` M ) /\ B e. ( SubMnd ` M ) )
-> ( A i^i B ) e. ( SubMnd ` M ) ) $=
( va vb vx vy cfv wcel wi wss cv co wral w3a wa elin imp adantl eleq1d ex
csubmnd cin cmnd submrcl cbs cplusg ssinss1 3ad2ant1 ad2antrl simplbi2com
c0g 3ad2ant2 com12 anbi12i oveq1 oveq2 simpl eqidd rspc2vd 3ad2ant3 simpr
adantr elind syl5bi ralrimivv 3jca eqid issubm anbi12d 3imtr4d expd mpcom
weq ) ACUBHZIZBVOIZABUCZVOIZCUDIZVPVQVSJACUEVTVPVQVSVTACUFHZKZCULHZAIZDLZ
ELZCUGHZMZAIZEANDANZOZBWAKZWCBIZWHBIZEBNDBNZOZPZVRWAKZWCVRIZFLZGLZWGMZVRI
ZGVRNFVRNZOZVPVQPVSVTWQXEVTWQPZWRWSXDWKWRVTWPWBWDWRWJABWAUHUIUJWQWSVTWKWP
WSWDWBWPWSJWJWPWDWSWMWLWDWSJWOWSWDWMWCABQUKUMUNUMRSXFXCFGVRVRWTVRIZXAVRIZ
PWTAIZWTBIZPZXAAIZXABIZPZPZXFXCXGXKXHXNWTABQXAABQUOXFXOXCXFXOPABXBXFXOXBA
IZWKXOXPJZVTWPWJWBXQWDXOWJXPXOXPWTWFWGMZAIWIDEWTXAAAADFVNZWHXRAWEWTWFWGUP
ZTEGVNZXRXBAWFXAWTWGUQZTXKXIXNXIXJURVCXOXSPZAUSXNXLXKXLXMURSUTUNVAUJRXFXO
XBBIZWQXOYDJZVTWPYEWKWOWLYEWMXOWOYDXOYDXRBIWNDEWTXABBBXSWHXRBXTTYAXRXBBYB
TXKXJXNXIXJVBVCYCBUSXNXMXKXLXMVBSUTUNVASSRVDUAVEVFVGUAVTVPWKVQWPDEWAWGACW
CWAVHZWCVHZWGVHZVIDEWAWGBCWCYFYGYHVIVJFGWAWGVRCWCYFYGYHVIVKVLVMR $.
$}

${
$d x y B $. $d x y M $. $d x y N $. $d x y .0. $.
0mhm.z $e |- .0. = ( 0g ` N ) $.
Expand Down Expand Up @@ -741927,6 +741949,46 @@ According to Wikipedia ("Endomorphism", 25-Jan-2024,
ULUMUNUOVKWHVPSDEBBFFVOUPUQUTVAVBVCVDVEBFGCIKMLVFVGVH $.
$}

${
$d A h x y $. $d M x y $. $d V x y $.
sursubmefmnd.m $e |- M = ( EndoFMnd ` A ) $.
$( The set of surjective endofunctions on a set ` A ` is a submonoid of the
monoid of endofunctions on ` A ` . (Contributed by AV, 25-Feb-2024.) $)
sursubmefmnd $p |- ( A e. V
-> { h | h : A -onto-> A } e. ( SubMnd ` M ) ) $=
( vx vy wcel cv wfo cfv wral vex foeq1 elab wf fof eqid syl wa cab cplusg
csubmnd cbs wss c0g elefmndbas syl5ibr syl5bi ssrdv cid cres efmndid wf1o
co f1oi f1ofo mp1i cvv wb resiexg elabg mpbird eqeltrrd anbi12i ccom foco
adantl wceq anim12i anbi12d imp efmndov eleq1d coex syl6bb ralrimivv cmnd
ex w3a efmndmnd issubm mpbir3and ) ADHZAABIZJZBUAZCUCKHZWGCUDKZUEZCUFKZWG
HZFIZGIZCUBKZUOZWGHZGWGLFWGLZWDFWGWIWMWGHZAAWMJZWDWMWIHZWFWTBWMFMZAAWEWMN
OZWTXAWDAAWMPZAAWMQZAWIWMCDEWIRZUGZUHUIUJWDUKAULZWKWGACDEUMWDXHWGHZAAXHJZ
AAXHUNXJWDAUPAAXHUQURWDXHUSHXIXJUTADVAWFXJBXHUSAAWEXHNVBSVCVDWDWQFGWGWGWS
WNWGHZTWTAAWNJZTZWDWQWSWTXKXLXCWFXLBWNGMZAAWEWNNOVEWDXMWQWDXMTZWQAAWMWNVF
ZJZXMXQWDAAAWMWNVGVHXOWQXPWGHXQXOWPXPWGXOXAWNWIHZTZWPXPVIWDXMXSXMXSWDXDAA
WNPZTWTXDXLXTXEAAWNQVJWDXAXDXRXTXGAWIWNCDEXFUGVKUHVLAWIWOCWMWNEXFWORZVMSV
NWFXQBXPWMWNXBXNVOAAWEXPNOVPVCVSUIVQWDCVRHWHWJWLWRVTUTACDEWAFGWIWOWGCWKXF
WKRYAWBSWC $.

$( The set of injective endofunctions on a set ` A ` is a submonoid of the
monoid of endofunctions on ` A ` . (Contributed by AV, 25-Feb-2024.) $)
injsubmefmnd $p |- ( A e. V
-> { h | h : A -1-1-> A } e. ( SubMnd ` M ) ) $=
( vx vy wcel cv wf1 cfv wral vex f1eq1 elab wf f1f eqid syl wa cab cplusg
csubmnd cbs wss c0g elefmndbas syl5ibr syl5bi ssrdv cid cres efmndid wf1o
co f1oi f1of1 mp1i cvv wb resiexg elabg mpbird eqeltrrd anbi12i ccom f1co
adantl wceq anim12i anbi12d imp efmndov eleq1d coex syl6bb ralrimivv cmnd
ex w3a efmndmnd issubm mpbir3and ) ADHZAABIZJZBUAZCUCKHZWGCUDKZUEZCUFKZWG
HZFIZGIZCUBKZUOZWGHZGWGLFWGLZWDFWGWIWMWGHZAAWMJZWDWMWIHZWFWTBWMFMZAAWEWMN
OZWTXAWDAAWMPZAAWMQZAWIWMCDEWIRZUGZUHUIUJWDUKAULZWKWGACDEUMWDXHWGHZAAXHJZ
AAXHUNXJWDAUPAAXHUQURWDXHUSHXIXJUTADVAWFXJBXHUSAAWEXHNVBSVCVDWDWQFGWGWGWS
WNWGHZTWTAAWNJZTZWDWQWSWTXKXLXCWFXLBWNGMZAAWEWNNOVEWDXMWQWDXMTZWQAAWMWNVF
ZJZXMXQWDAAAWMWNVGVHXOWQXPWGHXQXOWPXPWGXOXAWNWIHZTZWPXPVIWDXMXSXMXSWDXDAA
WNPZTWTXDXLXTXEAAWNQVJWDXAXDXRXTXGAWIWNCDEXFUGVKUHVLAWIWOCWMWNEXFWORZVMSV
NWFXQBXPWMWNXBXNVOAAWEXPNOVPVCVSUIVQWDCVRHWHWJWLWRVTUTACDEWAFGWIWOWGCWKXF
WKRYAWBSWC $.
$}

${
$d A f $. $d A x y $. $d B x y $. $d M x y $. $d V f $.
symgsubmefmnd.m $e |- M = ( EndoFMnd ` A ) $.
Expand All @@ -741935,6 +741997,17 @@ According to Wikipedia ("Endomorphism", 25-Jan-2024,
$( The symmetric group on a set ` A ` is a submonoid of the monoid of
endofunctions on ` A ` . (Contributed by AV, 18-Feb-2024.) $)
symgsubmefmnd $p |- ( A e. V -> B e. ( SubMnd ` M ) ) $=
( vf wcel cv wf1o cab csubmnd cfv symgbas wf1 wfo cin eqeltrid inab abbii
wa df-f1o bicomi eqtr2i injsubmefmnd sursubmefmnd insubm syl2anc ) AEJZBA
AIKZLZIMZDNOZIABCGHPUKUNAAULQZIMZAAULRZIMZSZUOUTUPURUCZIMUNUPURIUAVAUMIUM
VAAAULUDUEUBUFUKUQUOJUSUOJUTUOJAIDEFUGAIDEFUHUQUSDUIUJTT $.

$( The symmetric group on a set ` A ` is a submonoid of the monoid of
endofunctions on ` A ` . Alternate proof based on ~ submefmnd and not
on ~ injsubmefmnd and ~ sursubmefmnd . (Contributed by AV,
18-Feb-2024.) (Proof modification is discouraged.)
(New usage is discouraged.) $)
symgsubmefmndALT $p |- ( A e. V -> B e. ( SubMnd ` M ) ) $=
( vx vy vf wcel cmnd cbs cfv wss c0g cv syl eqid cplusg ccom cmpo csubmnd
w3a wceq cgrp symggrp grpmnd wf1o cab cmap co nfv nfab1 nfcv abid wf f1of
id elmapd syl5ibr syl5bi ssrd symgbas efmndbas 3sstr4g cid efmndid symgid
Expand Down

0 comments on commit ca97d9e

Please sign in to comment.