Skip to content

Commit

Permalink
The exponential function is continuous (iset.mm) (metamath#3746)
Browse files Browse the repository at this point in the history
* Add efcn to iset.mm

Copied without change from set.mm

* Add sincn to iset.mm

The proof needs minor intuitionizing in a number of steps but is
basically the set.mm proof.

* Add coscn to iset.mm

Stated as in set.mm.  The proof needs intuitionizing in a number of
places but is basically the set.mm proof.

* Add reeff1olem and reeff1o to mmil.html

* Add reefiso , efcvx , and reefgim to mmil.html

* Add pilem1 to iset.mm

Copied from set.mm with the only change being to not have the comment
link to theorems we don't have yet.

* add pilem2 and pilem3 to mmil.html

* add pigt2lt4 , sinpi , and pire to mmil.html
  • Loading branch information
jkingdon authored Jan 7, 2024
1 parent 04ca1b1 commit de46203
Show file tree
Hide file tree
Showing 2 changed files with 144 additions and 0 deletions.
73 changes: 73 additions & 0 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -142684,6 +142684,79 @@ S C_ ( P ( ball ` D ) T ) ) $=
$}


$(
###############################################################################
BASIC REAL AND COMPLEX FUNCTIONS
###############################################################################
$)


$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
Basic trigonometry
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The exponential, sine, and cosine functions (cont.)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

$( The exponential function is continuous. (Contributed by Paul Chapman,
15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) $)
efcn $p |- exp e. ( CC -cn-> CC ) $=
( cc wss ce wf ccncf co wcel ssid eff w3a cdv cdm wceq dvef feq1i fdmi dvcn
mpbir mpan2 mp3an ) AABZAACDZUACAAEFGZAHZIUDUAUBUAJACKFZLAMUCAAUEAAUEDUBIAA
UECNORPAACQST $.

${
$d x y $.
$( Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.) $)
sincn $p |- sin e. ( CC -cn-> CC ) $=
( vx vy cc ci cv cmul co cfv cmin cdiv cmpt wcel wtru ccom eqid mulc1cncf
ce a1i mp1i cncfmpt1f csin cneg c2 ccncf df-sin wral cmopn ctx subcncntop
wf cabs ccn efcn ax-icn negicn cncfmpt2fcntop cncff syl fmpt sylibr eqidd
oveq1 fmptcof cc0 cap wbr 2muliap0 divccncfap mp2an cncfco eqeltrrd mptru
2mulicn eqeltri ) UAACDAEZFGZQHZDUBZVOFGZQHZIGZUCDFGZJGZKZCCUDGZAUEWDWELM
BCBEZWBJGZKZACWAKZNWDWEMABCCWAWGWCWIWHMCCWIUJZWACLACUFMWIWELWJMAVQVTIUKIN
UGHZCWKOZIWKWKUHGWKULGLMWKWLUIRMAVPQCQWELMUMRZDCLACVPKZWELMUNADWNWNOPSTMA
VSQCWMVRCLACVSKZWELMUOAVRWOWOOPSTUPZCCWIUQURACCWAWIWIOUSUTMWIVAMWHVAWFWAW
BJVBVCMCCCWIWHWPWHWELZMWBCLWBVDVEVFWQVMVGBWBWHWHOVHVIRVJVKVLVN $.

$( Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.)
(Revised by Mario Carneiro, 3-Sep-2014.) $)
coscn $p |- cos e. ( CC -cn-> CC ) $=
( vx vy cc ci cv cmul co ce caddc cdiv cmpt wcel wtru ccom eqid mulc1cncf
cfv c2 a1i mp1i ccos cneg ccncf df-cos wf wral cabs cmin cmopn addcncntop
ctx ccn efcn ax-icn cncfmpt1f negicn cncfmpt2fcntop cncff syl fmpt sylibr
eqidd oveq1 fmptcof cc0 cap wbr 2cn 2ap0 divccncfap mp2an cncfco eqeltrrd
mptru eqeltri ) UAACDAEZFGZHQZDUBZVPFGZHQZIGZRJGZKZCCUCGZAUDWDWELMBCBEZRJ
GZKZACWBKZNWDWEMABCCWBWGWCWIWHMCCWIUEZWBCLACUFMWIWELWJMAVRWAIUGUHNUIQZCWK
OZIWKWKUKGWKULGLMWKWLUJSMAVQHCHWELMUMSZDCLACVQKZWELMUNADWNWNOPTUOMAVTHCWM
VSCLACVTKZWELMUPAVSWOWOOPTUOUQZCCWIURUSACCWBWIWIOUTVAMWIVBMWHVBWFWBRJVCVD
MCCCWIWHWPWHWELZMRCLRVEVFVGWQVHVIBRWHWHOVJVKSVLVMVNVO $.
$}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Properties of pi = 3.14159...
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

$( Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro,
9-May-2014.) $)
pilem1 $p |- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <->
( A e. RR+ /\ ( sin ` A ) = 0 ) ) $=
( crp csin ccnv cc0 csn cima cin wcel wa cfv wceq elin cc rpcn biantrurd wf
wfn wb sinf ffn fniniseg mp2b syl6rbbr pm5.32i bitri ) ABCDEFGZHIABIZAUGIZJ
UHACKELZJABUGMUHUIUJUHUJANIZUJJZUIUHUKUJAOPNNCQCNRUIULSTNNCUANEACUBUCUDUEUF
$.


$(
###############################################################################
GUIDES AND MISCELLANEA
Expand Down
71 changes: 71 additions & 0 deletions mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -11186,6 +11186,77 @@
<td>~ dvmptsubcn</td>
</tr>

<tr>
<td>reeff1olem</td>
<td><i>none</i></td>
<td>The set.mm proof depends on ivth (the Intermediate
Value Theorem). Apparently, the Monotonic Intermediate
Value Theorem (Theorem 5.5 of [Bauer], p. 494) would
suffice if we can prove that.</td>
</tr>

<tr>
<td>reeff1o</td>
<td><i>none</i></td>
<td>the set.mm proof uses reeff1olem</td>
</tr>

<tr>
<td>reefiso</td>
<td><i>none</i></td>
<td>the set.mm proof uses reeff1o and the converse of
~ efltim</td>
</tr>

<tr>
<td>efcvx</td>
<td><i>none</i></td>
<td>the set.mm proof uses reeff1o , reefiso , dvres , dvres3 ,
iccntr , and dvcvx</td>
</tr>

<tr>
<td>reefgim</td>
<td><i>none</i></td>
</tr>

<tr>
<td>pilem2</td>
<td><i>none</i></td>
<td>the set.mm proof needs some obvious intuitionizing around not
equal to zero versus apart from zero, and nonempty versus
inhabited, but more seriously it depends on infrecl , infregelb ,
and infrelb</td>
</tr>

<tr>
<td>pilem3</td>
<td><i>none</i></td>
<td>The set.mm proof depends on ivth2 (the Intermediate
Value Theorem). Apparently, the Monotonic Intermediate
Value Theorem (Theorem 5.5 of [Bauer], p. 494) could
replace it if we can prove that. Additionally, the set.mm
proof uses infrelb , infrecl , pilem2 , and infregelb .</td>
</tr>

<tr>
<td>pigt2lt4</td>
<td><i>none</i></td>
<td>the set.mm proof uses pilem3</td>
</tr>

<tr>
<td>sinpi</td>
<td><i>none</i></td>
<td>the set.mm proof uses pilem3</td>
</tr>

<tr>
<td>pire</td>
<td><i>none</i></td>
<td>the set.mm proof uses pilem3</td>
</tr>

</TABLE>

<HR NOSHADE SIZE=1><A NAME="bib"></A><B><FONT
Expand Down

0 comments on commit de46203

Please sign in to comment.