Skip to content

Commit

Permalink
nonunital -> non-unital
Browse files Browse the repository at this point in the history
  • Loading branch information
avekens committed Jan 18, 2025
1 parent 1249373 commit f69068c
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -775117,7 +775117,7 @@ Nonzero rings (extension)
rngdi.b $e |- B = ( Base ` R ) $.
rngdi.p $e |- .+ = ( +g ` R ) $.
rngdi.t $e |- .x. = ( .r ` R ) $.
$( Distributive law for the multiplication operation of a nonunital ring
$( Distributive law for the multiplication operation of a non-unital ring
(right-distributivity). (Contributed by AV, 17-Apr-2020.) $)
rngdir $p |- ( ( R e. Rng /\ ( X e. B /\ Y e. B /\ Z e. B ) ) ->
( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) $=
Expand All @@ -775137,15 +775137,15 @@ Nonzero rings (extension)
${
rngcl.b $e |- B = ( Base ` R ) $.
rngcl.t $e |- .x. = ( .r ` R ) $.
$( Closure of the multiplication operation of a nonunital ring.
$( Closure of the multiplication operation of a non-unital ring.
(Contributed by AV, 17-Apr-2020.) $)
rngcl $p |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) $=
( crng wcel cmgp cfv cmgm csgrp eqid rngmgp sgrpmgm syl mgpbas mgpplusg
co mgmcl syl3an1 ) BHIZBJKZLIZDAIEAIDECTAIUCUDMIUEBUDUDNZOUDPQAUDDECABUDU
FFRBCUDUFGSUAUB $.

rnglz.z $e |- .0. = ( 0g ` R ) $.
$( The zero of a nonunital ring is a left-absorbing element. (Contributed
$( The zero of a non-unital ring is a left-absorbing element. (Contributed
by AV, 17-Apr-2020.) $)
rnglz $p |- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = .0. ) $=
( crng wcel wa co cplusg cfv wceq cgrp cabl syl adantr syl2anc rngabl w3a
Expand Down Expand Up @@ -775504,8 +775504,8 @@ Nonzero rings (extension)
GVHABFVRVHVRFDULPZDVRFWATHVRTZUMUNUQUOUPVGVLURKVMURKZVSVNKVHCVLVLTZUSVHVJ
WCVPDVMVMTZUSSABVLVMVSVRBCVLWDGUTDVRVMWEWBVAVSTVBUHVCVDCDEVLVMWDWEVEVF $.

$( The constant mapping to zero is a nonunital ring homomorphism from any
nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) $)
$( The constant mapping to zero is a non-unital ring homomorphism from any
non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) $)
c0rnghm $p |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) )
-> H e. ( S RngHomo T ) ) $=
( crng wcel crg cnzr wa co cmgp cfv cgrp syl eqid cdif cghm wss ringssrng
Expand Down Expand Up @@ -775578,8 +775578,8 @@ Nonzero rings (extension)
CUEUHUIUJUK $.
$}

$( The constant mapping to zero is a nonunital ring homomorphism from the
zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020.) $)
$( The constant mapping to zero is a non-unital ring homomorphism from the
zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.) $)
zrrnghm $p |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) )
-> H e. ( T RngHomo S ) ) $=
( va vc wcel wa co cfv wceq wral syl adantr eqid crng crg cnzr cdif cmulr
Expand Down Expand Up @@ -776993,7 +776993,7 @@ underlying set (base set) and the morphisms (non-unital ring
zrinitorngc.c $e |- C = ( RngCat ` U ) $.
zrinitorngc.z $e |- ( ph -> Z e. ( Ring \ NzRing ) ) $.
zrinitorngc.e $e |- ( ph -> Z e. U ) $.
$( The zero ring is an initial object in the category of nonunital rings.
$( The zero ring is an initial object in the category of non-unital rings.
(Contributed by AV, 18-Apr-2020.) $)
zrinitorngc $p |- ( ph -> Z e. ( InitO ` C ) ) $=
( vh vr vx cfv wcel wa wceq crng eqid eleq2d adantr va cinito cv chom weu
Expand All @@ -777016,7 +777016,7 @@ underlying set (base set) and the morphisms (non-unital ring
UUKWQXTWLNUUKUUIWBWOVSWPWRWSWTTXAXBWSXNYDJYAYBXJYAXMXCXDWIXEAXPBJXLEKYMYT
AYSBXFNFBCDGXGWIUUAXIXH $.

$( The zero ring is a terminal object in the category of nonunital rings.
$( The zero ring is a terminal object in the category of non-unital rings.
(Contributed by AV, 17-Apr-2020.) $)
zrtermorngc $p |- ( ph -> Z e. ( TermO ` C ) ) $=
( vh vr vx cfv wcel cv wa wceq crng eqid adantr va ctermo chom co weu cbs
Expand Down

0 comments on commit f69068c

Please sign in to comment.