Skip to content

Commit

Permalink
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ci skip] Initial commit 37431d8
Browse files Browse the repository at this point in the history
balins committed Aug 28, 2024
0 parents commit 6989629
Showing 109 changed files with 16,103 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: f51136111eba58b7ed8810f833e65d91
tags: 645f666f9bcd5a90fca523b33c5a78b7
Empty file added .nojekyll
Empty file.
Binary file not shown.
41 changes: 41 additions & 0 deletions _downloads/084669b45b226af6f637ab8457c8c5aa/plot_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
"""
============================
Plotting Template Classifier
============================
An example plot of :class:`skltemplate.template.TemplateClassifier`
"""

# %%
# Train our classifier on very simple dataset
from skltemplate import TemplateClassifier

X = [[0, 0], [1, 1]]
y = [0, 1]
clf = TemplateClassifier().fit(X, y)

# %%
# Create a test dataset
import numpy as np

rng = np.random.RandomState(13)
X_test = rng.rand(500, 2)

# %%
# Use scikit-learn to display the decision boundary
from sklearn.inspection import DecisionBoundaryDisplay

disp = DecisionBoundaryDisplay.from_estimator(clf, X_test)
disp.ax_.scatter(
X_test[:, 0],
X_test[:, 1],
c=clf.predict(X_test),
s=20,
edgecolors="k",
linewidths=0.5,
)
disp.ax_.set(
xlabel="Feature 1",
ylabel="Feature 2",
title="Template Classifier Decision Boundary",
)
18 changes: 18 additions & 0 deletions _downloads/2844e15e96683b9e78e43f57c6f47e9e/plot_template.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
"""
===========================
Plotting Template Estimator
===========================
An example plot of :class:`skltemplate.template.TemplateEstimator`
"""
import numpy as np
from matplotlib import pyplot as plt

from skltemplate import TemplateEstimator

X = np.arange(100).reshape(100, 1)
y = np.zeros((100,))
estimator = TemplateEstimator()
estimator.fit(X, y)
plt.plot(estimator.predict(X))
plt.show()
43 changes: 43 additions & 0 deletions _downloads/33e3b8fda2687ae96879282d905830b7/plot_template.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting Template Estimator\n\nAn example plot of :class:`skltemplate.template.TemplateEstimator`\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nfrom matplotlib import pyplot as plt\n\nfrom skltemplate import TemplateEstimator\n\nX = np.arange(100).reshape(100, 1)\ny = np.zeros((100,))\nestimator = TemplateEstimator()\nestimator.fit(X, y)\nplt.plot(estimator.predict(X))\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
27 changes: 27 additions & 0 deletions _downloads/35939d2f12dbb3de2b921c8a33dd72c2/plot_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
"""
=============================
Plotting Template Transformer
=============================
An example plot of :class:`skltemplate.template.TemplateTransformer`
"""
import numpy as np
from matplotlib import pyplot as plt

from skltemplate import TemplateTransformer

X = np.arange(50, dtype=np.float64).reshape(-1, 1)
X /= 50
estimator = TemplateTransformer()
X_transformed = estimator.fit_transform(X)

plt.plot(X.flatten(), label="Original Data")
plt.plot(X_transformed.flatten(), label="Transformed Data")
plt.title("Plots of original and transformed data")

plt.legend(loc="best")
plt.grid(True)
plt.xlabel("Index")
plt.ylabel("Value of Data")

plt.show()
43 changes: 43 additions & 0 deletions _downloads/5b2cebfab9d8cca4393d66b1e4b8a8e7/plot_transformer.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting Template Transformer\n\nAn example plot of :class:`skltemplate.template.TemplateTransformer`\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nfrom matplotlib import pyplot as plt\n\nfrom skltemplate import TemplateTransformer\n\nX = np.arange(50, dtype=np.float64).reshape(-1, 1)\nX /= 50\nestimator = TemplateTransformer()\nX_transformed = estimator.fit_transform(X)\n\nplt.plot(X.flatten(), label=\"Original Data\")\nplt.plot(X_transformed.flatten(), label=\"Transformed Data\")\nplt.title(\"Plots of original and transformed data\")\n\nplt.legend(loc=\"best\")\nplt.grid(True)\nplt.xlabel(\"Index\")\nplt.ylabel(\"Value of Data\")\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Binary file not shown.
86 changes: 86 additions & 0 deletions _downloads/fed3e85cac62fc93e088aa8cb008d467/plot_classifier.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting Template Classifier\n\nAn example plot of :class:`skltemplate.template.TemplateClassifier`\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Train our classifier on very simple dataset\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from skltemplate import TemplateClassifier\n\nX = [[0, 0], [1, 1]]\ny = [0, 1]\nclf = TemplateClassifier().fit(X, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a test dataset\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n\nrng = np.random.RandomState(13)\nX_test = rng.rand(500, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use scikit-learn to display the decision boundary\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.inspection import DecisionBoundaryDisplay\n\ndisp = DecisionBoundaryDisplay.from_estimator(clf, X_test)\ndisp.ax_.scatter(\n X_test[:, 0],\n X_test[:, 1],\n c=clf.predict(X_test),\n s=20,\n edgecolors=\"k\",\n linewidths=0.5,\n)\ndisp.ax_.set(\n xlabel=\"Feature 1\",\n ylabel=\"Feature 2\",\n title=\"Template Classifier Decision Boundary\",\n)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
97 changes: 97 additions & 0 deletions _images/index_api.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 6989629

Please sign in to comment.