forked from yandech1/CS7641_project
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
da1af4e
commit 80f51f6
Showing
5 changed files
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
import matplotlib.pyplot as plt | ||
import os | ||
import glob | ||
|
||
INPUT_DIR = "Results/Discriminator" | ||
|
||
|
||
def main(): | ||
folders = ["Input", "PixelGAN", "PatchGAN1", "PatchGAN2", "PatchGAN3"] | ||
|
||
plt.figure(figsize=(20, 15)) | ||
type = 0 | ||
fsize = 35 | ||
for file in folders: | ||
test_images = sorted(glob.glob(os.path.join(INPUT_DIR, file, '*.jpg'))) | ||
type += 1 | ||
counter = 0 | ||
for img_path in test_images[0:5]: | ||
img = plt.imread(img_path) | ||
idx = 5 * counter + type | ||
plt.subplot(5, 5, idx) | ||
plt.imshow(img) | ||
if idx == 1: | ||
plt.title("Input", fontsize=fsize) | ||
elif idx == 2: | ||
plt.title("1x1", fontsize=fsize) | ||
elif idx == 3: | ||
plt.title("16x16", fontsize=fsize) | ||
elif idx == 4: | ||
plt.title("70x70", fontsize=fsize) | ||
elif idx == 5: | ||
plt.title("256x256", fontsize=fsize) | ||
plt.axis('off') | ||
counter += 1 | ||
# plt.savefig(fname="Artistic_Style3.png", bbox_inches='tight') | ||
plt.show() | ||
print('Saved Images') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import matplotlib.pyplot as plt | ||
import tensorflow as tf | ||
|
||
INPUT_DIR = "Results/Literature Comparison/" | ||
|
||
|
||
def preprocess_image(image_path): | ||
image = plt.imread(image_path) | ||
|
||
# resize to 286x286 | ||
Ht = tf.shape(image)[0] | ||
Wt = tf.cast(tf.math.multiply(1.5, tf.cast(Ht, tf.float16)), tf.int32) | ||
image = tf.image.resize(image, [Ht, Wt], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) | ||
|
||
return image | ||
|
||
|
||
def main(): | ||
|
||
plt.figure(figsize=(45, 15)) | ||
fsize =45 | ||
img_path = INPUT_DIR | ||
|
||
# Chicago | ||
img = preprocess_image(img_path + "chicago.jpg") | ||
plt.subplot(2, 5, 1) | ||
plt.imshow(img) | ||
plt.title("Input", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Style Image | ||
img = preprocess_image(img_path + "Starry_night.jpg") | ||
plt.subplot(2, 5, 2) | ||
plt.imshow(img) | ||
plt.title("Starry Night", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
|
||
# Gatys Starry | ||
img = preprocess_image(img_path + "Gatys_Starry.jpg") | ||
plt.subplot(2, 5, 3) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
|
||
# Justin Starry | ||
img = preprocess_image(img_path + "Justin_Starry.jpg") | ||
plt.subplot(2, 5, 4) | ||
plt.imshow(img) | ||
plt.title("Johnson et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# CycleGAN Starry | ||
img = preprocess_image(img_path + "CycleGAN_Starry.jpg") | ||
plt.subplot(2, 5, 5) | ||
plt.imshow(img) | ||
plt.title("CycleGAN", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Chicago | ||
img = preprocess_image(img_path + "chicago.jpg") | ||
plt.subplot(2, 5, 6) | ||
plt.imshow(img) | ||
plt.title("Input", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Style Image | ||
img = preprocess_image(img_path + "Wave.jpg") | ||
plt.subplot(2, 5, 7) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Gatys Starry | ||
img = preprocess_image(img_path + "Gatys_Wave.jpg") | ||
plt.subplot(2, 5, 8) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Justin Starry | ||
img = preprocess_image(img_path + "Justin_Wave.jpg") | ||
plt.subplot(2, 5, 9) | ||
plt.imshow(img) | ||
plt.title("Johnson et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# CycleGAN Starry | ||
img = preprocess_image(img_path + "CycleGAN_Wave.jpg") | ||
plt.subplot(2, 5, 10) | ||
plt.imshow(img) | ||
plt.title("CycleGAN", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# plt.savefig(fname="Artistic_Style3.png", bbox_inches='tight') | ||
plt.show() | ||
print('Saved Images') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
import matplotlib.pyplot as plt | ||
import os | ||
import glob | ||
|
||
OUTPUT_DIR = "Results/" | ||
INPUT_DIR = "Results/" | ||
|
||
def main(): | ||
folders = ["Input", "MonetPaintings", "CezannePaintings", "Ukiyo_ePaintings", "VanGoghPaintings"] | ||
|
||
plt.figure(figsize=(20, 31)) | ||
type = 0 | ||
fsize = 40 | ||
for file in folders: | ||
test_images = sorted(glob.glob(os.path.join(INPUT_DIR, file, '*.jpg'))) | ||
type += 1 | ||
counter = 0 | ||
for img_path in test_images[20:30]: | ||
img = plt.imread(img_path) | ||
idx = 5*counter + type | ||
plt.subplot(10, 5, idx) | ||
plt.imshow(img) | ||
if idx == 1: | ||
plt.title("Input", fontsize=fsize) | ||
elif idx == 2: | ||
plt.title("Monet", fontsize=fsize) | ||
elif idx == 3: | ||
plt.title("Cezanne", fontsize=fsize) | ||
elif idx == 4: | ||
plt.title("Ukiyo-e", fontsize=fsize) | ||
elif idx == 5: | ||
plt.title("Van Gogh", fontsize=fsize) | ||
plt.axis('off') | ||
counter += 1 | ||
plt.savefig(fname="Artistic_Style3.png", bbox_inches='tight') | ||
plt.show() | ||
print('Saved Images') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
import matplotlib.pyplot as plt | ||
import os | ||
import glob | ||
|
||
INPUT_DIR = "Results/" | ||
|
||
def main(): | ||
folders = ["MonetToLandscapeInput", "MonetToLandscape"] | ||
|
||
# plt.figure(figsize=(13, 25)) | ||
# type = 0 | ||
# fsize = 30 | ||
# for file in folders: | ||
# test_images = sorted(glob.glob(os.path.join(INPUT_DIR, file, '*.jpg'))) | ||
# type += 1 | ||
# counter = 0 | ||
# for img_path in test_images[:6]: | ||
# img = plt.imread(img_path) | ||
# idx = 2 * counter + type | ||
# plt.subplot(6, 2, idx) | ||
# plt.imshow(img) | ||
# if idx == 1: | ||
# plt.title("Input", fontsize=fsize) | ||
# elif idx == 2: | ||
# plt.title("Output", fontsize=fsize) | ||
# plt.axis('off') | ||
# counter += 1 | ||
# | ||
# plt.savefig(fname="MonetToLandscape1.png", bbox_inches='tight') | ||
# plt.show() | ||
# print('Saved Images 1') | ||
# | ||
# plt.figure(figsize=(13, 25)) | ||
# type = 0 | ||
# for file in folders: | ||
# test_images = sorted(glob.glob(os.path.join(INPUT_DIR, file, '*.jpg'))) | ||
# type += 1 | ||
# counter = 0 | ||
# for img_path in test_images[6:12]: | ||
# img = plt.imread(img_path) | ||
# idx = 2 * counter + type | ||
# plt.subplot(6, 2, idx) | ||
# plt.imshow(img) | ||
# if idx == 1: | ||
# plt.title("Input", fontsize=fsize) | ||
# elif idx == 2: | ||
# plt.title("Output", fontsize=fsize) | ||
# plt.axis('off') | ||
# counter += 1 | ||
# | ||
# plt.savefig(fname="MonetToLandscape2.png", bbox_inches='tight') | ||
# plt.show() | ||
# print('Saved Images 2') | ||
|
||
plt.figure(figsize=(27, 25)) | ||
counter = 0 | ||
folders = ["MonetToLandscape1.png", "MonetToLandscape2.png"] | ||
for img_path in folders: | ||
img = plt.imread(img_path) | ||
counter += 1 | ||
plt.subplot(1, 2, counter) | ||
plt.imshow(img) | ||
plt.axis('off') | ||
|
||
plt.savefig(fname="MonetToLandscape.png", bbox_inches='tight') | ||
plt.show() | ||
print('Saved Images') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
import matplotlib.pyplot as plt | ||
import tensorflow as tf | ||
|
||
INPUT_DIR = "Results/Literature Comparison/" | ||
|
||
|
||
def preprocess_image(image_path): | ||
image = plt.imread(image_path) | ||
|
||
# resize to 286x286 | ||
Ht = tf.shape(image)[0] | ||
Wt = tf.cast(tf.math.multiply(1.5, tf.cast(Ht, tf.float16)), tf.int32) | ||
image = tf.image.resize(image, [Ht, Wt], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) | ||
|
||
return image | ||
|
||
|
||
def main(): | ||
plt.figure(figsize=(45, 15)) | ||
fsize = 45 | ||
img_path = INPUT_DIR | ||
|
||
# Chicago | ||
img = preprocess_image(img_path + "chicago.jpg") | ||
plt.subplot(2, 5, 1) | ||
plt.imshow(img) | ||
plt.title("Input", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Style Image | ||
img = preprocess_image(img_path + "Starry_night.jpg") | ||
plt.subplot(2, 5, 2) | ||
plt.imshow(img) | ||
plt.title("Starry Night", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Gatys Starry | ||
img = preprocess_image(img_path + "Gatys_Starry.jpg") | ||
plt.subplot(2, 5, 3) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Justin Starry | ||
img = preprocess_image(img_path + "Justin_Starry.jpg") | ||
plt.subplot(2, 5, 4) | ||
plt.imshow(img) | ||
plt.title("Johnson et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# CycleGAN Starry | ||
img = preprocess_image(img_path + "CycleGAN_Starry.jpg") | ||
plt.subplot(2, 5, 5) | ||
plt.imshow(img) | ||
plt.title("CycleGAN", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Chicago | ||
img = preprocess_image(img_path + "chicago.jpg") | ||
plt.subplot(2, 5, 6) | ||
plt.imshow(img) | ||
plt.title("Input", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Style Image | ||
img = preprocess_image(img_path + "Wave.jpg") | ||
plt.subplot(2, 5, 7) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Gatys Starry | ||
img = preprocess_image(img_path + "Gatys_Wave.jpg") | ||
plt.subplot(2, 5, 8) | ||
plt.imshow(img) | ||
plt.title("Gatys et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# Justin Starry | ||
img = preprocess_image(img_path + "Justin_Wave.jpg") | ||
plt.subplot(2, 5, 9) | ||
plt.imshow(img) | ||
plt.title("Johnson et al.", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# CycleGAN Starry | ||
img = preprocess_image(img_path + "CycleGAN_Wave.jpg") | ||
plt.subplot(2, 5, 10) | ||
plt.imshow(img) | ||
plt.title("CycleGAN", fontsize=fsize) | ||
plt.axis('off') | ||
|
||
# plt.savefig(fname="Artistic_Style3.png", bbox_inches='tight') | ||
plt.show() | ||
print('Saved Images') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |