-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: SMP Baseline code refactoring #23
- Loading branch information
Showing
8 changed files
with
478 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
from pathlib import Path | ||
|
||
class Config: | ||
# Data | ||
TRAIN_IMAGE_ROOT = "train/DCM" | ||
TRAIN_LABEL_ROOT = "train/outputs_json" | ||
TEST_IMAGE_ROOT = "test/DCM" | ||
|
||
# Model | ||
BATCH_SIZE = 8 | ||
LEARNING_RATE = 1e-4 | ||
NUM_EPOCHS = 5 | ||
VAL_EVERY = 5 | ||
RANDOM_SEED = 21 | ||
|
||
# Paths | ||
SAVED_DIR = Path("checkpoints") | ||
SAVED_DIR.mkdir(exist_ok=True) | ||
|
||
# Classes | ||
CLASSES = [ | ||
'finger-1', 'finger-2', 'finger-3', 'finger-4', 'finger-5', | ||
'finger-6', 'finger-7', 'finger-8', 'finger-9', 'finger-10', | ||
'finger-11', 'finger-12', 'finger-13', 'finger-14', 'finger-15', | ||
'finger-16', 'finger-17', 'finger-18', 'finger-19', 'Trapezium', | ||
'Trapezoid', 'Capitate', 'Hamate', 'Scaphoid', 'Lunate', | ||
'Triquetrum', 'Pisiform', 'Radius', 'Ulna', | ||
] | ||
|
||
CLASS2IND = {v: i for i, v in enumerate(CLASSES)} | ||
IND2CLASS = {v: k for k, v in CLASS2IND.items()} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import os | ||
import cv2 | ||
import json | ||
import numpy as np | ||
import torch | ||
from torch.utils.data import Dataset | ||
from sklearn.model_selection import GroupKFold | ||
|
||
class XRayDataset(Dataset): | ||
def __init__(self, image_root, label_root=None, is_train=True, transforms=None): | ||
self.is_train = is_train | ||
self.transforms = transforms | ||
|
||
# Get all PNG files | ||
self.image_root = image_root | ||
self.label_root = label_root | ||
|
||
self.pngs = self._get_pngs() | ||
if is_train: | ||
self.jsons = self._get_jsons() | ||
|
||
# Verify matching between pngs and jsons | ||
jsons_fn_prefix = {os.path.splitext(fname)[0] for fname in self.jsons} | ||
pngs_fn_prefix = {os.path.splitext(fname)[0] for fname in self.pngs} | ||
|
||
# Check if all files match | ||
assert len(jsons_fn_prefix - pngs_fn_prefix) == 0, "Some JSON files don't have matching PNGs" | ||
assert len(pngs_fn_prefix - jsons_fn_prefix) == 0, "Some PNG files don't have matching JSONs" | ||
|
||
self.filenames, self.labelnames = self._split_dataset() | ||
else: | ||
self.filenames = sorted(self.pngs) | ||
|
||
def _get_pngs(self): | ||
return sorted([ | ||
os.path.relpath(os.path.join(root, fname), start=self.image_root) | ||
for root, _dirs, files in os.walk(self.image_root) | ||
for fname in files | ||
if os.path.splitext(fname)[1].lower() == ".png" | ||
]) | ||
|
||
def _get_jsons(self): | ||
return sorted([ | ||
os.path.relpath(os.path.join(root, fname), start=self.label_root) | ||
for root, _dirs, files in os.walk(self.label_root) | ||
for fname in files | ||
if os.path.splitext(fname)[1].lower() == ".json" | ||
]) | ||
|
||
def _split_dataset(self): | ||
_filenames = np.array(self.pngs) | ||
_labelnames = np.array(self.jsons) | ||
|
||
# Split train-valid using GroupKFold | ||
groups = [os.path.dirname(fname) for fname in _filenames] | ||
|
||
# dummy label | ||
ys = [0 for _ in _filenames] | ||
|
||
gkf = GroupKFold(n_splits=5) | ||
|
||
filenames = [] | ||
labelnames = [] | ||
|
||
for i, (x, y) in enumerate(gkf.split(_filenames, ys, groups)): | ||
if self.is_train: | ||
if i == 0: # Use fold 0 as validation | ||
continue | ||
|
||
filenames += list(_filenames[y]) | ||
labelnames += list(_labelnames[y]) | ||
else: | ||
filenames = list(_filenames[y]) | ||
labelnames = list(_labelnames[y]) | ||
break | ||
|
||
return filenames, labelnames | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
def __getitem__(self, item): | ||
image_name = self.filenames[item] | ||
image_path = os.path.join(self.image_root, image_name) | ||
|
||
image = cv2.imread(image_path) | ||
image = image / 255. | ||
|
||
if self.is_train: | ||
label_name = self.labelnames[item] | ||
label_path = os.path.join(self.label_root, label_name) | ||
|
||
# Create label with shape (H, W, NC) | ||
label_shape = tuple(image.shape[:2]) + (29,) # 29 classes | ||
label = np.zeros(label_shape, dtype=np.uint8) | ||
|
||
with open(label_path, "r") as f: | ||
annotations = json.load(f) | ||
annotations = annotations["annotations"] | ||
|
||
# Process each class | ||
for ann in annotations: | ||
c = ann["label"] | ||
class_ind = self.CLASS2IND[c] | ||
points = np.array(ann["points"]) | ||
|
||
class_label = np.zeros(image.shape[:2], dtype=np.uint8) | ||
cv2.fillPoly(class_label, [points], 1) | ||
label[..., class_ind] = class_label | ||
|
||
if self.transforms is not None: | ||
inputs = {"image": image, "mask": label} | ||
result = self.transforms(**inputs) | ||
image = result["image"] | ||
label = result["mask"] | ||
|
||
# Convert to tensor format | ||
image = image.transpose(2, 0, 1) | ||
label = label.transpose(2, 0, 1) | ||
|
||
return torch.from_numpy(image).float(), torch.from_numpy(label).float() | ||
else: | ||
if self.transforms is not None: | ||
inputs = {"image": image} | ||
result = self.transforms(**inputs) | ||
image = result["image"] | ||
|
||
image = image.transpose(2, 0, 1) | ||
return torch.from_numpy(image).float(), image_name | ||
|
||
class XRayInferenceDataset(Dataset): | ||
def __init__(self, image_root, transforms=None): | ||
self.image_root = image_root | ||
self.transforms = transforms | ||
self.filenames = self._get_pngs() | ||
|
||
def _get_pngs(self): | ||
return sorted([ | ||
os.path.relpath(os.path.join(root, fname), start=self.image_root) | ||
for root, _dirs, files in os.walk(self.image_root) | ||
for fname in files | ||
if os.path.splitext(fname)[1].lower() == ".png" | ||
]) | ||
|
||
def __len__(self): | ||
return len(self.filenames) | ||
|
||
def __getitem__(self, item): | ||
image_name = self.filenames[item] | ||
image_path = os.path.join(self.image_root, image_name) | ||
|
||
image = cv2.imread(image_path) | ||
image = image / 255. | ||
|
||
if self.transforms is not None: | ||
inputs = {"image": image} | ||
result = self.transforms(**inputs) | ||
image = result["image"] | ||
|
||
image = image.transpose(2, 0, 1) | ||
return torch.from_numpy(image).float(), image_name |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import albumentations as A | ||
|
||
class Transforms: | ||
@staticmethod | ||
def get_train_transform(): | ||
return A.Compose([ | ||
A.Resize(512, 512), | ||
# TODO: Add more augmentations later | ||
]) | ||
|
||
@staticmethod | ||
def get_valid_transform(): | ||
return A.Compose([ | ||
A.Resize(512, 512), | ||
]) | ||
|
||
@staticmethod | ||
def get_test_transform(): | ||
return A.Compose([ | ||
A.Resize(512, 512), | ||
]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import os | ||
import cv2 | ||
import torch | ||
import torch.nn.functional as F | ||
import pandas as pd | ||
from tqdm.auto import tqdm | ||
from torch.utils.data import DataLoader | ||
|
||
from config.config import Config | ||
from dataset.dataset import XRayDataset | ||
from utils.rle import encode_mask_to_rle | ||
from dataset.transforms import Transforms # Transforms 클래스 import | ||
|
||
def test(model, data_loader, thr=0.5): | ||
model = model.cuda() | ||
model.eval() | ||
|
||
rles = [] | ||
filename_and_class = [] | ||
|
||
with torch.no_grad(): | ||
for step, (images, image_names) in tqdm(enumerate(data_loader), total=len(data_loader)): | ||
images = images.cuda() | ||
outputs = model(images)['out'] | ||
|
||
# Resize to original size | ||
outputs = F.interpolate(outputs, size=(2048, 2048), mode="bilinear") | ||
outputs = torch.sigmoid(outputs) | ||
outputs = (outputs > thr).detach().cpu().numpy() | ||
|
||
for output, image_name in zip(outputs, image_names): | ||
for c, segm in enumerate(output): | ||
rle = encode_mask_to_rle(segm) | ||
rles.append(rle) | ||
filename_and_class.append(f"{Config.IND2CLASS[c]}_{image_name}") | ||
|
||
return rles, filename_and_class | ||
|
||
def main(): | ||
# 데이터셋 준비 | ||
test_dataset = XRayDataset( | ||
image_root=Config.TEST_IMAGE_ROOT, | ||
is_train=False, | ||
transforms=Transforms.get_test_transform() # Transforms 클래스 사용 | ||
) | ||
|
||
test_loader = DataLoader( | ||
dataset=test_dataset, | ||
batch_size=2, | ||
shuffle=False, | ||
num_workers=2, | ||
drop_last=False | ||
) | ||
|
||
# 모델 로드 | ||
model = torch.load(os.path.join(Config.SAVED_DIR, "best_model.pt")) | ||
|
||
# 추론 | ||
rles, filename_and_class = test(model, test_loader) | ||
|
||
# 결과를 DataFrame으로 변환 | ||
classes, filename = zip(*[x.split("_") for x in filename_and_class]) | ||
image_name = [os.path.basename(f) for f in filename] | ||
|
||
df = pd.DataFrame({ | ||
"image_name": image_name, | ||
"class": classes, | ||
"rle": rles, | ||
}) | ||
|
||
# CSV 저장 | ||
df.to_csv("submission.csv", index=False) | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
import segmentation_models_pytorch as smp | ||
|
||
def get_model(num_classes=29): | ||
return smp.Unet( | ||
encoder_name="efficientnet-b0", | ||
encoder_weights="imagenet", | ||
in_channels=3, | ||
classes=num_classes, | ||
) |
Oops, something went wrong.