-
Notifications
You must be signed in to change notification settings - Fork 789
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix PartialPriorFactor (again) #755
base: develop
Are you sure you want to change the base?
Conversation
Hey @miloknowles |
Re-reading: maybe the intent is just to show that unit tests fail? |
@dellaert the factor works now, but someone should probably review the implementation. I don't think it makes sense to put a prior on the tangent vector directly, which is how My solution is to put a prior on a "parameter vector", which can be different from the tangent and allows for more natural constraints (in my opinion). For example, I chose the Pose3 parameter vector to be The downside is that a parameter vector needs to be implemented for each variable type. It was easy to do this for |
It may be a bit before I get to this, because I’m very busy with end of semester duties. However, I glanced and did see some PoseRTV specific code in the PR. If there is a way to make this generic, that would be better. Also, NavState is the modern way to go :-) |
@miloknowles I had to undo some formatting to understand the core changes so I apologize for that. I'll revert them after we figure out the necessary updates to this PR. My $0.02: The docstring does mention that the error may be high when dealing with highly nonlinear manifolds, as well as the fact that we operate on the tangent space vector. Something to note is that when the tangent vector for the rotation component of Pose3 has a small norm (< 1e-10), the tangent vector for the full Pose3 has the same translation. This leads to 2 possible cases which make sense to me:
I don't quite agree with your parameterization since the translation component is not the true tangent vector. As you have already mentioned, this new parameterization is akin to For these reasons, I propose to update the tests to use the aforementioned tangent sub-vectors. |
#else | ||
// If the Rot3 Cayley map is used, Rot3::LocalCoordinates will throw a runtime | ||
// error when asked to compute the Jacobian matrix (see Rot3M.cpp). | ||
#ifdef GTSAM_ROT3_EXPMAP |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Are we making an assumption here on the type of T ? If so, consider template specialization
Unfortunately, while "fixing" the
PartialPriorFactor
in PR #721, I made a mistake in the factor's error calculation. While the Jacobians pass the numerical check, the factor does not return zero error at the zero linearization point, which is now asserted in the unit tests here. Sorry!The problem is that
T::LocalCoordinates(p)
does not simply return the translation part ofp
in the tangent vector (as I assumed), resulting in an incorrect error for translation priors. For example, inPose3::Logmap
, the translation part of the tangent depends on rotation:I think the same issue should come up in
Pose2::Logmap
ifSLOW_BUT_CORRECT_EXPMAP
is set.I'm not sure how to fix this problem in a way that would work for any manifold. If we restrict
PartialPriorFactor
to work withPose2
andPose3
, then the easy fix is to reuse the code fromPoseRotationPrior
andPoseTranslationPrior
. If anyone can think of a nicer way to fix this, any help would be appreciated.