parameter | |||||
---|---|---|---|---|---|
model_type | ConvNet4 | ConvNet6 | ResNet10 | ResNet18 | ResNet34 |
dataset | CUB | MiniImageNet | |||
if_augmentation | True | False | |||
num_epochs | 600 | ||||
batch_size | 1 | ||||
sgd_lr | 0.1 | ||||
num_way | 5 | ||||
num_shot | 5 | 1 | |||
num_query | 16 | ||||
num_train | 100 | ||||
num_val | 600 | ||||
num_test | 600 | ||||
proxy_type | Proxy | Mean | Sum | ||
Classifier | 3DConv | FC | Euclidean |
Table:The performance of ProxyNet with data augmentation
CUB | CUB | mini-ImageNet | mini-ImageNet | |
---|---|---|---|---|
Embedding Network | 1-shot | 5-shot | 1-shot | 5-shot |
Conv-4 | 67.52±0.97 | 82.85±0.60 | 52.95±0.76 | 70.35±0.63 |
Conv-6 | 68.16±0.93 | 83.57±0.58 | 52.18±0.82 | 69.91±0.62 |
ResNet-10 | 76.79±0.84 | 88.02±0.52 | 58.16±0.87 | 75.27±0.65 |
ResNet-18 | 76.72±0.90 | 88.63±0.49 | 57.88±0.87 | 75.23±0.66 |
ResNet-34 | 77.70±0.86 | 87.05±0.52 | 58.54±0.85 | 75.90±0.61 |
Reference Code: FEAT https://github.com/Sha-Lab/FEAT